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2.10* Consider the electron oscillator model for the case in which there is no field
acting on the atom. Suppose that at ¢ = 0 an electron is given the displace-
ment X, from equilibrium, and the velocity ¥o.

(a) Show that the electron coordinate x (¢} is given by

Yo .
x(t) = x; cos wf + e wy?
(V]

(b) What is the total (kinetic plus potential) energy of the electron?

(¢} Using the formula (2.5.14), derive an expression for the rate at which
the oscillating electron radiates electromagnetic energy. Give the rate
averaged over times long compared with the period of oscillation.

(d) Show that the electron can be expected to radiate away most of its en-

ergy in a time
2620\
T = 47eg (—*-_%)
3me

This is the classical picture of **spontaneous emission,”” which we con-
sider in Chapter 7.

(¢) Estimate numerically the “‘radiative lifetime’” 7 found in part (d) for
the case of an electron oscillating at an optical frequency #o( =wqy/2%).

2.11 Show that the scattering cross section for radiation of frequency w much
greater than the natural oscillation frequency wp is given by the Thomson
formula

8r , 8x( &
a(m>>wo)=-3_r°=? W

where ry = & /Amegme? is called the ““classical electron radius.”” What is
the magnitude of 7? .

2.12 A typical He-Ne laser operating at 6328 A contains about five times as
much He as Ne, with a total pressure of about one Torr. The length of the
gain cell is about 50 cm. Estimate the fraction of laser radiation intensity
lost due to Rayleigh scattering in passing a billion times through the gain
cell. (Note: For STP Ne the constants in (2.4.9) are 4 = 6.66 X 107° and
B = 2.4 % 107" cm®.) This illustrates the fact that Rayleigh scattering is
usually very weak in gas laser media.

*Starred problems are somewhat more difficuit.

3 CLASSICAL THEORY OF
ABSORPTION - |

3.1 INTRODUCTION

Most objects around us are not self-uminous but are nevertheless visible because
they scatter the light that falls upon them. Most objects are colored, however,
because they absorb light, not simply because they scatter it. The colors of an
object typically arise because materials selectively absotb light of certain frequen-
cies, while freely scattering or transmitting light of other frequencies. Thus if an
object absorbs light of all visible frequencies, it is black. An object is red if it
absorbs all (visible) frequencies except those our eyes perceive to be *‘red”’ (wave-
lengths roughly between about 6300 and 6800 A), and so on.'

The physics of the absorption process is simplest in well-isolated atoms. These
are found most commenly in gases. White light propagating through a gas is ab-
sorbed at the resonance frequencies of the atoms or molecules, so that one observes
gaps in the wavelength distribution of the emerging light, On a spectrogram these
gaps appear as bright lines on the dark, exposed background. The gaps, shown as
lines in Figure 3.1, correspond to the absorption of sunlight by the atmosphere of
the sun before the light reaches the earth. The absorbed energy is partially con-
verted into heat (translational kinetic energy of the atoms) when excited atoms (or
molecules) which have absorbed radiation collide with other particles. The ab-
sorbed radiation is also partially reradiated in all directions at the frequency of the
absorbed radiation. This is called resonance radiation, or resonance fluorescence.
When the pressure of the gas is increased, collisions may rapidly convert the ab-
sorbed radiation into heat before it can be reradiated. In this case the resonance
radiation is said to be quenched.

Most atoms have electronic resonance frequencies in the ultraviolet, although
resonances in the visible and infrared are not uncommon. Sodium, for instance,
has strong absorption lines in the yellow region at 5890 and 5896 A, the Fraun-
hofer ““D lines,”” and their position is indicated in Figure 3.1.

Electronic resonances in molecules also tend to lie in the ultraviolet. We have
“white’” daylight because the atmosphere, consisting mostly of N, and O,, does
not absorb strongly at visible frequencies.

In molecules the separate atorns act approximately as if they were connected to
each other by springs, so that entire atoms vibrate back and forth. Atoms are of

1. The principa] features of the clectromagnetic spectrum for our purposes are summarized in Table
3 inside the cover of the book.

65
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Figure 3.1 Absorption lines of the sun’s atmosphere. The Fraunhofer D lines of sodium at
5890 and 5896 A are not resolved in this sketch.

course much more massive (by 10°-10° times) than electrons, and the natural vi-
brations of molecules are consequently slower. We: can. estimate, on the basis of
this mass difference (Problem 3.1), that molecular vibration frequencies should lie
in the infrared portion of the electromagnetic spectrurm.

A molecule as a whole can also rotate; the resonance frequencies associated
with molecular rotations lie in the microwave portion of the spectrum. Molecules
therefore typically have resonances in the ultraviolet, infrared, and microwave
regions of the spectrum.

Absorption in liquids and solids is much more complicated than in gases. In
liquids and amorphous solids such as glass, the absorption lines have such large
widths that they overlap. Water, for example, is obvieusly transparent in the vis-
ible, but absorbs in the near infrared, i.e., at infrared wavelengths not far removed
from the visible. Its absorption curve is wide enough, in fact, that it extends into
the red edge of the visible. (Figure 3.2) The weak absorption in the red portion of

visible
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Figure 3.2 Absorption coefficient of water.
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the visible spectrum explains why things appear green when one is sufficiently
submerged under water.

A broad absorption curve covering all visible wavelengths except those in a
particular narrow band is characteristic of the molecules of a dye. The absorbed
radiation is converted into heat before it can be reradiated. Such broad absorption
curves and fast quenching rates require the high molecular number densities of
liquids and solids.

In metals some of the atomic electrons are able to move freely about under the
influence of an electromagnetic field The fact that metals contain these ‘‘free’’
electrons explains, of course, why they are good conductors of electricity. In the
free-electron approximation we may apply the dispersion formula (2.4.12). The
plasma frequency e, for metals is usually in the uliraviolet (Problem 3.2). Thus
visible frequencies (w < w,) cannot penetrate into the metal. They are completely
reflected, just as AM radio waves are reflected by the ionosphere. This strong
reflection gives metals their shine. In a metal like gold there is alse absorption,
associated with the electrons that remain bound to atoms, and it is this that gives
the metal a characteristic color.

In a solid that is a good electrical insulator, the electrons are tightly bound, and
consequently the natural oscillation frequencies are high, typically comresponding
to wavelengths less than 4000 A. An insulator, therefore, is usually transparent
in the visible but opague in the ultraviolet. In semicenductors the natural oscilla-
tion frequencies are smaller. Silicon, for example, absorbs visible wavelengths (it
is black), but transmits radiation of wavelength greater than one micron (1 micron
= 1 pm}. ‘

Lattice defects (deviations from periodicity) can substantially modify the ab-
sorption spectra of crystalline solids. Ruby, for instance, is corundum (AlO;)
with an occasional (roughly 0.05% by weight) random substitution of Cr*? ions
in place of Al**. The chromium ions absorb green light and thus ruby is pink, in
contrast to the transparency of pure corundum,

The variety of natural phenomena resulting from the selective absorption of
certain wavelengths and the transmission of others is too broad to treat here. We
mention only one important example, the “‘greenhouse effect.”” Visible sunlight
is transmitted by the earth’s atmosphere and heats (by absorption) both land and
water. The warmed earth’s surface is a source of thermal radiation, the dominant
emission for typical ambient temperatures being in the infrared. This infrared ra-
diation, however, is strongly absorbed by CO, and H,0 vapor in the earth’s atmo-
sphere, preventing its rapid escape into space. Without this effect, the earth would
be a much colder place. An increased burning of fossil fuels could conceivably
enhance the greenhouse effect by increasing the level of CO, in the atmosphere.

2. The term *“grecnhouse effect™ is actually a misnomer, originating in the observation that the glass
in a greenhouse. which is transparent in the visible but opaque to the infrared, plays an absorptive role
similar to that of CO, and H,0 in the earth’s atmosphere. This effect, however, does not contribute
significantly to the warming of the air inside a real greenhouse. A real greenhouse mainly prevents
cooling by wind currents. This point was demonstrated experimentally by R. W. Wood (1909), al-
though the contrary misconception persists even among scientists,
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3.2 ABSORPTION AND THE LORENTZ MODEL

The strength of an electromagnetic field will be reduced in transit through a ma-
terial medium if the atoms (or molecules) of the medium can absorb radiant en-
ergy. More commonly than not, in a wide variety of materials, absorption can be
explained by the assumption that the Lorentz electron oscillators introduced in
Chapter 2 are subject to a frictional force. The origin: of a “‘frictional”” force is
itself a subject for discussion, which will be found in Section 3.9. For the moment,
however, we will take a frictional force for granted, and explore its consequences.
We simply amend the Newton force law (2.2.18) to read

2

d
m dt—;‘ = eE(R, 1) — kx + Fye (3.2.1)

and we make the simplest assumption compatible with the idea of frictional drag:

ax
Froe = —bv = —b— (3.2.2)

Then the Newton equation of motion (2.3.7) for an electron oscillator in a linearly
polarized monochromatic plane wave takes the form

dx dx s e
= = 3= — 3.2.3
ol 28 o T eox S - E, cos (wt — kz) ( )

where for later convenience we have defined

As in Chapter 2 we have introduced the natural oscillation frequency
E\2
wy = (—“") (3.2.4)
m
associated with Lorentz’s elastic force.
If there is no applied field, Eq. (3.2.3) becomes

dx ax
d

e + 28 . +wix =0 {(3.2.5)
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T Figure 3.3 An LRC circuit. The charge on the capacitor
obeys the equation of motion (3.2.6) for a damped oscillator.

This i§ the- equation describing a damped oscillator. A well-known example is an
LRC circuit (Figure 3.3), where the charge ¢ on the capacitor satisfies the equation

§ 2
d¢ Rd 1
‘—+‘"—q+—q=0 (3.2.6)

In this case the natural oscillation frequency and the damping rate are determined
by the fundamental parameters of the circuit:

_{1\:ip
wp = (“LE) {3.2.74)
and
R
B = oL (3.2.70)

The solution of the differential equation (3.2.6) is
g(r) = (A cos wyt + B sin wjr) e (3.2.8a)
where
wh = (0} — g (3.2.8b)

Under most conditions of interest the oscillator will be significantly underdamped
[§ce Eq. (3.3.10)] and we can replace «f, by oy, Since (3.2.6) is a second-order
linear differential eqeation, its solution has two constants of integration which are
determined by the initial conditions for () and dg(¢)/d¢. We have denoted these
two constants by A and B.

If the LRC circnit is driven by a sinusoidal emf (Figure 3.4),

V{t) = V cos (wt ~ 8) (3.2.9)
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o Figure 3.4 An LRC circuit with a sinusoidal emf. The charge
on the capacitor obeys the equation of motion (3.2.10) for a
stnusoidally driven, damped oscillator.

V(t) =V cos (wt-8)

then g satisfies the forced-oscillator equation

2 d ”
%+2,8:§+w§q=fcos(mt—ﬂ)

(3.2.10)
where wg and 3 are given by (3.2.7). This is just a scalar version of the electron
oscillator vector equation (3.2.3), with L corresponding to the electron’s mass/
charge ratio

L="2 (3.2.11)
e
and # corresponding to the field phase at the position of the atom:
6=k = % (3.2.12)

In contrast to the homogeneous solution (3.2.8a), which decays to zero, the
solution to the forced-oscillator equation (3.2.10) is a steady sinusoidal oscillation
with an amplitede depending on w and w,. The amplitude has a2 maximum when
w = wy, and one says that the circuit of Figure 3.4 exhibits a resonance. From
(3.2.7a) we see that this resonance condition is met when the capacitance is

1

C=—
w?L

(3.2.13)

When the resonance condition is approached by tuning the capacitance to the res-
onance value (3.2.13), the amplitude of the oscillating current in the cirenit in-
creases dramatically, as shown in Figure 3.5. This resonant enhancement is used
in simple radio receivers, where a variable capacitor permits tuning to various
broadcast frequencies. :

The interaction of an atom with a monochromatic field is similarly enhanced
when

(3.2.14)
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Figure 3.5 The amplitude of the oscillating current in an LRC circuit with emf (3.2.9.
The current oscillation is at the driving frequency w, and has maximum amplitude when
the resonance condition @ = ap = (1/LC)'/? is satisfied.

i.e., when the frequency of the field coincides with a natural oscillation frequency
of a bound electron. This enhancement of the interaction is already implied by our
result (2.3.14b) for the refractive index, However, that result is obviously unde-
fined if @ = wy. A frictional force in the electron oscillator model allows us to
understand formulas like (2.3.14b) even for w = wy, while also providing the
physical mechanism for the absorption of electromagnetic energy.

3.3 COMPLEX POLARIZABILITY AND INDEX OF REFRACTION

The equation (3.2.3) for the electron oscillator with damping is most easily solved
by first writing it in complex form:

d*x dx
T el = TR e — R

art dr (3.3.1)

where we follow the convention of writing E, cos (wr — kz) as E, e ~/(@f=%)
This means that x{z) in Eq. (3.3.1) is also regarded mathematically as a complex
quantity in our calculations, but only its real part is physically meaningful. In other
words, we may defer the process of taking the real part of (3.3.1) until after our
calculations, at which point the real part of our solution for %*(t) is the (real)
¢lectron displacement, This approach is standard in solving linear equations, but
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there are pitfalls that can arise in nonlincar problefns. [See C.hapter 1".", where
modifications of Eq. (3.3.1) are used in an introduction to nonlinear optics.]
We solve (3.3.1) by temporarily writing
x{t) = a e (3.3.2)

and after inserting this in (3.3.1) we obtain
e
(—w® — 2ife + wi)a = &~ Ep (3.3.3)

Therefore the assumed solution (3.3.2) satisfies Eq. 3.3.0if

o Re/m)Es (3.3.4)
T w? - w4+ 2ifw

and the physically relevant solution is therefore

_ o (&le/m)Eg e 7 h’) 3.3.5
x(r)—Re( R (3.3.5)

Note that (3.3.5) actually gives only the steady-state solution of (3.3.1). Any
solution of the homogeneous version of (3.3.1) can be adcicd.to (3.3.5), and the
total will stil be a solution of (3.3.1). The homogeneous Version 18

d th dxhom
=i 2
i g dt

+ @iXpom = 0 (3.3.6)
and its general selution is an obvious vectorial extension of (3.2.8a):
Xom = [A cOs wjt + B sin wpr] €™ (3.3.7)
where again
wh = (@F - 827 ~ g (3.3.8)
We will usually neglect the homogeneous part of the full solution to (3.3.1).

This is obviously an approximation. The approximation is however an excellent
one whenever

r>> 1/8 . (3.3.9)

Under this condition, e~ << 1 and we can safely neglect the homogeneous com-
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ponent ¢3.3.7) because it makes only a short-lived transient contribution to the
solution.

Even though the homogeneous damping time, or lifetime w, = 1/8, is very
short, it is not the shortest time in the problem. Typically the oscillation periods
T = 2r/wand Ty = 27 /w, associated with the natural oscillation frequency wy
or the forcing frequency w are very much shorter. In the case of ordinary optically
transparent materials such as atomic vapors, glasses, and many crystals and lig-
uids, both wg and e are typically in the neighborhood of 10*% sec™, and 3 falls in
a wide range of much smaller frequencies:

8 = 10°-10" sec™! << wp, @ (3.3.10)

Relations (3.3.9) and (3.3.10), taken together, imply that times of physical interest
must be much longer than an optical period:

> B s> e, W (3.3.11)

That is, steady-state solutions of (3.3.1) are valid for times that are many periods
of oscillator vibration (T = 27 /w,) and forced vibration (T = 2% /w) removed
from ¢ = 0, but they cannot be used to predict the oscillator’s response within the
first few cycles after ¢ = 0., This is, however, a restriction of no real significance
in optical physics, as it is equivalent to

t >> 107" sec (=107 ps) (3.3.12)

This is a time span one or two orders of magnitude smaller than can presently be
resolved optically.

The steady-state solution (3.3.5) is very close to the solution (2.3.8) for the
undamped oscillator. It implies that the electric field induces in an atom a dipole
moment p = ¢X, or p = L; ex; in the case of many electrons:

et E,eitet — &)
- R é_—_q_———_ e
P e( mwgmw“—Ziﬁw) (3.3.13)
or
2 Z
P4 : 1
=R £ —i{wr — kz) Z . S
P ¢ (émEo ¢ jmtwl —w® — 21',51,-&)

The real part can be found explicitly to be

p = 352_ ((w% — w?YEq cos (wr — kz) + 2BwE, sin (ar — kz)

m (wd — w2)2 + 48%"

) (3.3.14)

with a corresponding expression for a multielectron systern.
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Because of the frictional damping (i.e., becavse 8 # () the dipole moment no
longer oscillates completely in phase with the electric field as it did in (2.3.8). The
new term proportional to sin (wt — kz) signifies the existence of a phase lag in the
dipole response. Thus there is no single real polarizability coefficient that can be
identified as the ratio of the dipole moment and the electric field strength.

It is possible nevertheless, and penerally very convenient, to introduce a com-
plex polarizability. This is done by recognizing that {3.3.2) can be used to define
a complex dipole moment p: '

p=ex=eae - & (3.3.15)

The complex polarizability « is defined by the relation between complex moment
and complex field:

p = a(w)dE e o~ (3.3.16)

In the present case, by comparing (3.3.13) and (3.3.16) we casily identify the
complex polarizability of a Lorentzian atom to be

e*/m

wh — w* — Zifuw

1l

ofw)

e? wh— w®+ 2ifw

= (3.3.17)
m (w3 - wz)z + 4f32%w?
orin the case of many electrons,
() = z e*/m
T AT - W C 28w
Z gt ol — W+ 2ifw
— ; J ! (3.3.18)

e
jSim(e? — 0?) + 48207

Given the complex polarizability (3.3.17) or (3.3.18), the complex polarization

density is
P = Np = Naf(w)£E, e /¢ — (3.3.19)

Using this polarization density in the wave equation (2.1.13), together with the
complex form of the assumed solution (2.3.1}, we obtain

2 wz —i{wr — kz)
-k + ? £ EO [-4

2
= o Nale) g g it 0 (3.3.20)
c €p
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Therefore k& must satisfy the dispersion relation
2 ‘
2= m_z (1 + M)
¢
= % n*(w), (3.3.21)

just as in Eq. (2.3.13).
In this case, because «(w) is complex the refractive index is also a complex
number: '

\
1

. Ne?/me,
nw) =1+ 55—t
() wi — w® — 2iBw
&_2_ wh — w* + 2ifuw
mey (g — w2)2 + 48%w?

[relw) + in ()} (3.3.22)

If

The most important consequence of these results is that the electrie field in the
medium behaves differently from the field discussed in Chapter 2 because n{w) is
now complex:

E(z, 1) = By e = 9
= ﬁEO e-—im[:—n(w)z/c]

= £E, e~ lrr()luzfe —iw{r—[nr(a)]2/c} (3.3.23)

Note that E(z, ) is no longer purely oscillatory. Due to n;(w), the field decays
with increasing distance of propagation. Since the intensity is proportional to the
square of the (real) clectric field [recall Eq. (2.6.4) and (2.6.8)], the intensity
shows exponential decay with z:

L(z) = I{0) (e~Tmnee/ey? = f p=ata)z (3.3.24)
where we call a(w) the absorption coefficient or extinction coefficient:

a(w) = 2[n ()] w/c

INe® By’
N Eme ? (w? mz)ﬂ + 48%0° (3:3.25)
J i

I

As in (2.3.23) we have used n = 1. This is a very important result, and we will
return to it shortly.
The phase velocity of the wave (3.3.23) is ¢/ng(w). The real part of the com-
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real Index of refraction npluw}

Figure 3.6 Anomalous dispersion curve for a collision-broadened absorption line.

plex refractive index is therefore what would ordinarily be called the *‘refractive
index.’” This refractive index is plotted versus frequency in Figure 3.6. On the
low-frequency side of each resonance frequency, ng(w) increases with increasing
frequency, i.e., we have *‘normal dispersion’ (Section 2.4): However, when @
gets within 3; of w;, ng(w) begins decreasing with increasing frequency. ”l_"ius
decrease continues until « is more than §; from w; on the hjgh—frcquenc‘y side,
wherenpon it again increases with increasing frequency. Because most media show
normal dispersion at optical frequencies, the negative slope of the dispersion curve
near an absorption line was historically termed anomalous dispersion.

* Anomalous dispersion was observed by R. W. Wood in 1904. Wood studied t}}e i.:lisper~
sion of light at frequencies near the sodium D lines {5890 and 5896 A). The basic idea of
Wood’s experiment is sketched in Figure 3,7. Light enters a tube in which sodium vapor
is produced by heating sodium. The vapor pressure decreases upwards in the tube, so tl"lat
for normal dispersion the light would be bent downward, in the direction of greater density

spectroscope

Bunsen burner RW. Wood
Figure 3.7 One of R. W. Wood’s experiments on anomalous dispersion in sodium vapor.
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and refractive index. The vapor thus acts as a kind of prism. The light emerging at the other
end of the tube is focused onto the entrance slit of a spectroscope. Wood writes:

On heating the tube, the sodium prism deviates the rays of different wave-length
up or down by different amounts, curving the spectrum into two oppositely directed
branches. The spectrum on the green side of the D lines will be found to bend down
in the spectroscope, which means that the rays are deviated upwards in passing through
the sodium tube, since the spectroscope inverts the image of its slit. This means that
this phase velocity is greater in the sodium vapor than in vacuo, or the prism acts for
these rays liks an air prism immersed in water. The red and orange region is deviated
in the opposite direction; these rays are therefore retarded by the vapor.

In dther words, the refractive index on the low-frequency side of resanance was cbserved
to be greater than unity, whereas on the high-frequency side it was less than unity. This is
the behavior shown in Figure 3.6. In fact Wood’s measured curve of refractive index versus

frequency showed exactly the “*anomalons dispersion’ form predicted by the electron os-
cillator model, »

3.4 POLARIZABILITY AND INDEX OF REFRACTION NEAR A
RESONANCE

Most of the time we will be primarily interested in the response of the dipoles that
are very nearly resonant with an applied field. These dipoles will usually be a small
minority of the dipoles present. The sharpness of their resonant response (recall
Figure 3.5) makes them particularly important. However, the other dipoles in the
far off-resonant *‘background”’ can be so numerous that they also make a signifi-
cant contribution to the polarizability and index of refraction, and we cannot over-
look them. :

Equation (3.3.18) shows that the polarizability is additive over all dipole re-
sponse frequencies. Thus we can write

alw) = ay(w) + o (o) (3.4.1)

where «, and o, are the contributions from *‘background” and *‘resonant’’ di-
poles, respectively. The background dipoles may reside in an actual host material,
in which the atoms with the resonant dipoles are embedded, or they may be dipoles
associated with nonresonant oscillations in the same atoms as the resonant dipoles.
In either event, the relations (3.4.1) and (3.3.21) imply

n(e0) =1 + Z%%(m) + 2 o (o) (3.4.2)
i 0 o

where we have indicated a sum over all background species.
The first two terms in (3.4.2) determine #,, (@), the index of refraction of the
background or host material. Thus we will write
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Nya, (@)
€

- i (1 + )

n2(w) = ni(a) +

(3.4.3)

where ¢, = nie is the diclectric permittivity of the background. If the resonant
atoms are present in a monatomic beam, then the background ruaterial is vacuum
or nearly so and the background contributions can largely be ignored. Even in an
atomic vapor a, ¢an be taken to be unity to three or four significant figures. How-
ever, in laser physics, the background material is frequently a solid or liquid. For
example, the mby laser operates because of dipoles associated with chromium ions
thinly dispersed throughout 2 solid lattice (the crystal called corundum), and the
dye molecules of a dye laser are dissolved ina Jiquid solvent (for example ethanol).
Then n,, is significantly different from unity, typically in the range 1.3-2.0. We
will write n, in place of n, (@) hereafter because the resonances of the background
are typically in the infrared or ultraviolet and n, is effectively constant at optical
frequencies.

The resonant dipoles do not make a correspondingly large coniribution, since
they are usually present in such small concentrations. The concentration of the
chromium jons in ruby, for example, may be only 10'° per em’ or even less, much
smaller than typical solid densities. As a consequence the last term in (3.4.3) is
typically much smaller than unity. Then the total index of refraction can be ex-

pressed compactly as follows:
1/2
", (1 N N,a,(w))

n{x)

€y

Noa, (@)

Zn,,eo

where we have again used ¢, = n2e, after expanding the square root and keeping
only the first term in the binomial series (1 + M= 1+ x/2 + x7/8 ke

Now we must consider what we mean by *‘near to resonance.”” Note in (3.3.17
that when 8 = O the imaginary part of c:(w) vanishes and the real part reduces to
(2.3.10). In any event, if w-is far enough from the resonance frequencies w;, we
can put 8 = 0 without affecting the result appreciably. It should be clear then that
“far from resopance’’ is only a relative term, relative to the damping coefficient
B. For any resonance frequency wj, then, “‘far from resonance’’ means

loy — @] >> 8 (3.4:52)

(3.44)
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and ‘‘near to resonance’’ means

lo; — w|.= B; (3.4.5b)
_ A significant contribution to e(w) can come from a resonance if the associated
Biis small enough. Suppose there is one frequency w; = w, close enough to w to
gatisfy (3.4.5b) and all others satisfy the off-resonance condition (3.4.3a). For
clarity we .will label the resonant damping coefficient 8 without a subscript. Then
we can write

2
€ 1
o, (w) = =g

3 m g~ w — 2ifw

'_The resonant part of a(w) can be written in a still simpler form if ¢ is close
:ough 10 wy to justify the approximation
lwp — ] << @, up (3.4.6)

w_hj'ch is aIwaJ.(s guaranteed in practice whenever the earlier approximation
3= @] = B is valid. In this case we can write

i~ w® = (w + ) (w ~ @) = 2w(w — o), {3.4.7)
and under this condition we have
%/ 2mew
o (w) = / (3.4.8)

wg — & — i

When the field frequency w is far removed from all the resonance frequencies
o :fthe medium, the complex polarizability (3.3.17) reduces to the real polariz-
ability (2.3.10). In this case the refractive index predicted by the electron oscillator
) ___del has been discussed in Chapter 2. For frequencies @ near to any of the w;
h‘o_Wever., the friction coefficient 8 becomes important. For example, it is just bé:
use 3 is not zero that the refractive index does not become infinite whenever w
);, @8 I8 (erroncously) predicted by (2.3.14).

__'_I‘-he real and imaginary parts of the index of refraction can now be identified
;_;ly, using (3.4.8) for o, (w), and we find

2
Ne @y — W

+
dnpregme (w — @) + B2

ne(@) = Rye

(3.4.9)

Ne? B8

Anreoma (v, — @) + B2

n(w) = nyr + (3.4.10)
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Here we have written n,; and n,,; for the real and imaginary parts of n,. Also we
have assumed ny, >> ny,. Finally, by comparison with (3.3.25) and (3.4.10), we
obtain the absorption coefficient due to the resonance frequency wg:
alw) = 2m{w) w/c
Ne? B

2WppeoME (0 — m)2 + p?

= ay(w) + (3.4.11)

where a,{w) = 2n,; o/ c is the background absorption coefficient.

3.5 LORENTZIAN ATOMS AND RADIATION IN CAVITIES

The Newton-Lorentz equation for the response of an atomic dipole to an applied
radiation field was given in (3.2.3) under the assumption that the radiation took
the form of a traveling wave. That is, in complex notation, the electric field was
assumed to have the form

E(z, t) = £E, g~ ilor — 10 (3.5.1)

This is not appropriate for dipoles in cavities, where the electric field takes the
form of a standing wave:

E(z, t) = £E, sin k,z ¢~ {3.5.2)

where

k=k,=nr/L, n=1,23,... {3.5.3)
as we indicated in Eq. (1.3.2) and derived in Section 2.1,

In this section we will examine the polarizability of atoms exposed to a stand-
ing-wave ficld, and the radiation emitted by these atoms into the cavity. The prin-

cipal consequences are a new expression for the relation between k and w and the

- discovery that a classical laser of Lorentz dipoles can’t work.

In free space [recall (2.3.13)] we specified » and used the coupled Maxwell-
Newton equations to find &£ = k(w), and this dispersion relation defined the index
of refraction: n{w) = k{w) ¢/w, as in (3.3.21). In a cavity, we specify the cavity
length I which first determines the wave vector &k =:k, = nx /L [recall (1.3.2)],
but not the frequency «. We will use the coupled Maxwell-Newton equations to
find » = w(k,} # w, Thatis, we will find that the presence of dipoles in the
cavity will bias @, the actual oscillation frequency of the field, away from the
natural frequency of the cavity mode, ®, = nwc/L.
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First we rewrite (3.2.3) using (3.5.2) and obtain

d*x dx
—_— + —_—
dr? 28 4t

+wlx =4 i E, sin k,z e~ (3.5.4)

'. The solution of this equation is the obvious analog of (3.3.2):
X = asinkze™ (3.5.5)

. where the amplitude a can be found casily by substitution into (3.5.4). It satisfies
(3.3.3) exactly. In other words the atomic polarizability «(w) remains as derived
in (3.3.17), even though the atoms are in a standing wave,

: Next we determine the field amplimde. The appropriate Maxwell wave equation
- for a cavity is the same as (2.1.13), except that cavity losses can be included by
- adding an ohmic current J = oE to the right side of (2.1.4). Then we obtain

52 s a9 1 3% 1 a2
(3 e~ 90 B9 = gagaten (59

" Here the second term represents the effect of ohmic losses, such as would be due

- to a finite conductivity o (Problem 3.3). This is & common method for modeling
cavity losses in laser theory.

] The polarization is defined to be P = Nex, as before, so we can use (3.5.5) to

; evaluate the derivatives on the right side of (3.5.6) and use (3.5.2) for computing

- the derivatives on the left side. After differentiating we can cancel the common
“factor £E, sin k,z ¢~ on both sides to get:

2 2 2
~ky + f( wi) +(2) = —(9> g Ne'/em
€aC C [ wy — W — 21,8&0

- Now we use k, = «,/c, and the near-resonance approximation (3.4.7) twice:

wi — w? = 2w({wy — w) (3.5.7a)
w? — w? = 2u(o — w,) (3.5.7)
"o get
2 _ .
m—con+i“0—=—N‘3 “o co2+1ﬁ’
2gg deom (wo — w)” + B2
=3(d+ig)c (3.5.8)
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where we have defined g and & as abbreviations for:

2
PR B (3.5.9)
Zeomc (wo —_ w) + _»62

and

Nez wy — W
260”10 (wo — w)Z + .62

_ glug — @) : (3.5.10)
8

We note immediately that all reference to the field amplimde.ha's dropped out in
the step from (3.5.6) to the solution (3.5.8), as it did.in the suml:i\r_ step between
Egs. (3.3.20) and (3.3.21). What remains is the consistency cc_»ndmon ‘(3.5 .8) on
the parameters of the interaction. That is, (3.5.8) is the dispersion relation for the
cavity. )

Let us now solve for g and &. By matching imaginary parts of (3.5.8) we quickly
determine

g =a/ec (3.5.11)

Next we look at the real parts of (3.5.8). With the aid of (3.5.10) we find the
simple relation

w, —w = g (@ — wp) (3.5.12)

We can interpret this second relation as a condition on the oscillation frequengy
w. Note that if e is below the cavity frequency w,, the left side of (3.5.12) is
positive and the right side shows that w must then lie above the atomic dipole
frequency wo. Conversely, if w is above w,, then it must be below wg. In other
words, no matter whether wg > @, 0T ©, > @o the operating frequency lies be-
tween the cavity frequency and the dipole frequency. This is_ called frequency
pulling; the interaction with the atomic dipoles pulls the elef:mc field frequency
away from the free-space cavity frequency and toward the dipole frequency. An
explicit solution of (3.5.12) is

_ ﬁwn + (gC/Z) @o
B+ ge/2

sy G G59)

= w, +
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It is possible to give a physical interpretation to the equation for g as well, If

" we were to allow E, in Eq. (3.5.2) t0 be time-dependent, then upon substitution
into Maxwell's wave equation (3.5.6) we ‘would obtain a differential equation for

E,(r) instead of the consistency equation (3.5.11), We would find that E, (1) grows
exponentially in time if g > o/epc. Thus ge is the classical gain coefficient for
the interaction of radiation with atomic dipoles in a cavity (Problem 3.4).

We could go on and formulate immediately a classical theory of laser action.

. For example, the equality in (3.5.11) gives the value of g = o /¢yc at which am-

plification is first possible. This is the threshold gain, usvally denoted g,. Unfor-
tunately, none of this is realistic becaunse (3.5.11) cannot be satisfied. That is, from
(3.5.9) we see immediately that g is intrinsically negative. Radiation in the cavity
will only be damped and never amplified by classical dipoles. A classical laser
theoty based on the linear electron oscillator model is not passible.

The negative value of g is inherent in the classical theory. It requires a quantum-
mechanical treatment of the light-matter interaction to understand how g can be
made positive. Apart from this detail, it is remarkable how much of the present
classical formulation survives the transition to quantum theory. For example, ex-
cept for its sign, the form of the gain coefficient will tum out to be exactly correct.
The frequency-pulling equation (3.5.12) is exactly correct as it stands. The thresh-
old condition (3.5.11) is correct. We will find how to make g positive in Chapter
7, and in so doing will find other missing elements of laser theory, such as satu-
ration and power broadening.

3.6 THE ABSORPTION COEFFICIENT

We can associate the energy absorbed from an electromagnetic wave by an atom
with the work done by the wave on the Lorentzian oscillators. In classical me-
chanics the rate at which work is done on an atom when a force F is exerted on it
is dW, /dr = F - v. In the electron oscillator model the force exerted on an electron
by the monochromatic field (2.3.1) is simply the Lorentz force appearing on the
right side of (2.2.18):

F.. = efE; cos {wr — k) (3.6.1)
in which case we can write

aw, dp
—L =F - — 3.6.2
dr dr ( )

This expression does not lead to energy absorption by the oscillator if p is in
phase with E. In this section we focus attention on an oscillator near to resonance,
for which (@) has a significant imaginary (quadrature) part and for which energy
absorption does occur. We can use (3.4.8) to obtain
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e 1 it — )
=34 ————FE,e (3.6.3a)
P é2rf'tt.u<.‘:r0—cu—i,ﬁ’ 0 ¢
which corresponds to the (real) physical moment:

p{r) = e[ U cos (or — kz) — Vsin: (wr — kz)] (3.6.3b)

The coefficients U and V are easily found by computing the real part of (3.6.32)
and comparing with (3.6.3b):

eE(} Wy — W :
U= +——"——77—— (3.6.4)
2mew (e — w)z + B
and
yo B (3.6.5)

 2mw {wo — c«:)2 + p*

The corresponding solution obtained without damping would have no quad'ratu_re
component corresponding to V. The existence of the quadrature component is ¢rit-
ical to our discussion of absorption, as we now demonstrate. From Eq. (3.6.3b)
we obtain

% = —wte[Usin (wr — k) + Vcos (ot — kz)] (3.6.6)
t

Therefore the rate at which the dipole energy changes is given by

il

e —eEy[U sin (wt — kz) cos (wt — kz) + oV cos? (et — kz)]

ewFo[ =} U sin (2wt — 2kz) — V cos® (wt — kz)] (3.6.7)

Notice that the dipole’s energy gain has two distinct contributions. The first
term oscillates extremely rapidly and is zero on average, and thus does‘ not give
rise to any permanent change in energy. The second term, however, is alevays
positive-definite and corresponds to a steady decrease in ficld energy with time.
Then the rate of change of electromagnetic field energy, equal and opposite to
dW,/dz, is effectively governed by the second term alone:
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dw.
?em = ewFEyV cos” (wt — kz)

e’ B 2 2
e ——————— F' cos” (wr — kz (3.6.8
i Ty g Do or — ) )
where we have used the expression (3.6.5) for V.

Thus we may express the rate (3.6.8) at which electromagnetic energy is ab-
sorbed by an atom in terms of the magnitude of the Poynting vector at the atom
[recall (2.6.4)}:

|

AW, 2
m S Bz |s| (3.6.9)
dt 2epme () — w) + 7

This result is similar to (2.6.5). Both equations show that dW,,, /dr is proportional
to | S1. Of course (2.6.3) gives the rate of change of electromagnetic energy in a
light beam due to scattering, whereas (3.6.9) gives the rate due to absorption.

The similarity of (3.6.9) to (2.6.5) means that we may define an absorprion
cross section.

o(w) = e £ (3.6.10)

We may follow the same steps, leading from (2.6.6) to the extinction coefficient
2.6.16) due to scattering, to obtain the extinction coefficient due to absorption in
a medium of N atoms per unit volume:

Ne? i3

2e0me (wy ~ w)’ + 7

a(w) = No(w) = (3.6.11)

‘This extinction coefficient is usually called simply the absorprion coefficient. The
intensity of the incident wave after propagating a distance z into the absorbing
medivm is

I{(z) = L,(0) e7#t% (3.6.12)

just as in the case (2.6.15) when the incident wave is attenuated because of scat-
tering.

Equation (3.6.12) is identical to (3.3.24). We have simply obtained the same
physical result for the field attenuation due to absorption using two approaches. In
the first approach, leading to (3.3.24), absorption was associated with the imagi-
nery part of the complex refractive index. In this section we have obtained the
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same result via the rate at which a single atom absorbs energy from the field, The
two approaches are equivalent. Xeep in mind, however, that the absorption coef-
ficient derived here is physically distinct from the extinction coefficient due to
scattering derived in Section 2.6. Both lead to exponential attenuation of intensity,
and the total extinction coeflicient includes both.

The absorption coefficient is often written in terms of the circular frequency v,

p o= (,3/211‘ (3.6.13)

rather than the angular frequency «. From (3.6.11), therefore,

Ne? &
a(y) = —— o (3.6.14)
dmeome (v — wy) +:6vp
where
vy = o/ 2T (3.6.15)
and
dvy = B/2% (3.6.16)

The absorption coeflicient (3.6.14) is frequently written in the form

alv) = ;;—e——mcL(p) | (3.6.17)

where the lineshape function L{») is defined by

BVQ/‘.T ;

A 3.6.18)
(v — w) + v} (

L(v} =

This is called the Lorentzian function, and is plotted in Figure 3.8.

The Lorentzian function is a mathematically idealized lineshape in several re-
spects. We have already shown that it is the near-resonance approximation to the
more complicated function (3.3.25). The Lorentzian function is defined mathe-
matically for negative frequencies, cven though they have no physical significance.
It is exactly normalized to unity when integrated over all frequencies, as is casily
checled:

“ 8rg S““ dy
dv L =— — =1 3.6.19
S vL() T e (y — zfo)2 + 803 ( )

-0

3.6 THE ABSORPTION COEFFICIENT 87
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Figuare 3.8 The Lorentzian lineshape function.

and the r-lormalization is approximately the same when only the physical, positive
rgquenmes are used. The approximation is excellent for dpy << g [recall
3,3.1(_))].. In other words, the contribution of the unphysical negative frequencies
s neghglblg }Je:hause the linewidth is negligible compared with the resonance fre-
uency, and in this sense L i i i i

& Lmizry . (v) is physically as well as mathematically normalized
“The maximum value of L(») occurs at the resonance » = vy

1
L(v = L = —_—
(#) e = L(v0) e (3.6.20)
Aty = vo £ v, we have
L{vy + 3py) = 1 =1L()
amin = 2 F0 (3.6.21)

Because of this property, 26, i i 1

: » 281 is called the width of the Lorentzian function or the
Sull width at half maximum (FWHM), and 8v, is called the half width at half max-
mum (HWHM). The Lorentzian function is fully specified by its width (FWHM

r HWHM) and the frequenc; i i
X Yy vy where it peaks. The absorption ient i
reatest at resonance, where ® cocticient s

Ne?
a = = —
(v = ) meqmad, (3.6.22)
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and decreases to half this resonance value when the field is ““detuned”” from res-
onance by the half width §p; of the Lorentzian function.

Our classical theory thus predicts that the absorption is strongest when the fre-
quency of the light equals one of the natural oscillation frequencies of the bound
electrons. Far out in the wings of the Lorentzian, where |» — v,| >> &, there
is very little absorption. A knowledge of the width v, is therefore essential to a
quantitative interpretation of absorption data. In order to determine the numerical
magnitude of v, in a given situation, we must consider in some detail the physical
origin of this absorption width. This we do in Section 3.9.

We shall see later that a(») does not always have the Lorentzian form (3.6.17).
However, it will always be possible to write the absorption coefficient as

a(») = a,5(v) (3.6.23)

where the lineshape function §(»), whatever its form, is normalized to unity:

o

S dvS(r) = 1 (3.6.24)
0 .
With this normalization it follows that
S dva(v) = g, S dvS(») = g, (3.6.25)
a ¢

The integrated absorption coefficient «, is convenient becanse it is independent of
the lineshape function §(»), which may vary with parameters like pressure, tem-
perature, etc. It thus provides a measure of the inherent absorbing strength of the
atoms.

3.7 OSCILLATOR STRENGTH

Even more than the integrated absorption coefficient,: the integrated absorption
cross section, namely :

g, =a/N | (3.7.1)

is a convenient measure of absorption, because it characterizes the inherent gb-
sorbing strength of a single atom. From (3.6.23) and (3.6.17) we see that

_ Ne®
=
4eqmc

(3.7.2)
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and therefore
4egme

ar

(3.7.3)

The numerical value of g, is easily computed to be approximatety 2.65 X 1072
cm>sec” . This is a universal value, and according to our theory is applicable to
absorption by any atomic material.

Extensive experimental absorption data exist for atomic hydrogen. For exam-
ple, it is known to absorb strongly at a wavelength of about 1216 A, with an
integrated absorption coefficient of about 1.1 % 1072 cm®-sec™!. Thus our clas-
sical 'electron oscillator theory gives a reasonable order of magnitude, although it
is far from being quantitatively accurate. However, atoms do not absorb at only
one wavelength. Table 3.1 lists some wavelengths at which atomic hydrogen ab-
sorbs radiation. Our classical theory gives an integrated absorption cross section
(3.7.3) which is independent of »;, 50 that the same numerical value (2.65 X 1077
cm?-sec ™) should apply to every wavelength listed in Table 3.1. The second col-
urmn of Table 3.1 lists the observed integrated cross sections of these abserption
lines, while the third column gives the ratio of the observed value for each line to
the result (3.7.3) of the classical theory. We see that the classical result comes
close to the integrated absorption cross section only for the 1216- A line.

Before the advent of the quantum theory, this quantitative failure of the classical
theory was sidestepped by writing the integrated absorption cross section of a one-
electron atom as

2

e
4eqme

f (3.7.4)

o

where the parameter f is called the *‘oscillator strength,” and its values are given
by the third column of Table 3.1. In other words, the classical theory was patched
up by assigning a different “‘oscillator strength” to each natural oscillation fre-

TABLE 3.1 Some Inteprated Cross Sections of Atomic Hydrogen

Wavelength ¢; (actual) _ o, (actual)
(A) (em®-sec™) f= o, (classical theory)
1216 110 x 1072 0.416
1026 2.10 % 1073 0.079
973 7.69 x 107 0.029
950 3.71 % 107* 0.014
938 2.07 x 107* 0.0078
931 1.27 x 107 0.0048
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quency. In fact the integrated absorption cross section for any atom could be writ-
ten in the form (3.7.4) by making the ad koc replacement
et o2

=2 (3.7.5)
n m

wherever the quantity on the left appeared. In this way the Lorentz theory (of both
absorption and the refractive index) was brought into detailed numerical agreement
with experimental results. We will include f in most classical formulas hereafter.
Like the natural oscillation frequencies, however, the oscillator strengths had to
be taken as empirical parameters, without a theoretical basis. Quantum theory re-
moves both of these defects of Lorentz’s model.

3.8 ABSORPTION OF BROADBAND LIGHT

The rate at which the energy W, of an atom increases due to absorption of elec-
tromagnetic energy may be obtained from (3.6.2) or {3.6.9):

aw, —dW,,  xe’f g/m
dt dt 2e0mC (0 — @) + B2
2
ae'f [ 1
=—|— I 8.1
2egmc (27r S(p)) ' (3.8.1)

where we have added the subscript » to remind us that I, refers to the intensity of
monochromatic radiation at the frequency ».

Equation (3.8.1) gives the rate of increase of the energy of an atom due to
absorption from a monochromatic field of frequency ». In reality, of course, the
applied field will not be perfectly monochromatic. Hereafter we will indicate ex-
plicitly the dependence of field quantities on the frequency: Wep = Wep and I —
1,. The change in atomic energy is due to the action of all the frequency compo-

nents:
W\ 5 (ZWem
dt o * dt

_ 2181, (3.8.2)

4-60??‘16‘ 3

In many cases of interest the field is composed of a continuous range of frequen-
cies, and the summation in (3.8.2) must be replaced by an integral:
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4egme

where [ (2} dv is the intensity of radiation in the frequency band from » to » + dp.

It is convenient to define a spectral enérgy density p(v), such that p(») dv is
the electromagnetic energy per unit volume in the same frequency band (Figure
3.9). The total electromagnetic energy per unit volume is then

S: plv)dv = % S: I(v) dv (3.8.4)

Ci\eaﬂy (3.8.3) may be rewritten

(%)m‘l = 4‘;:{’1 S: S(¥) p(») dv (3.8.3)

‘We can now define “‘broadband’” light as follows. Whenever the spectral en-
ergy density p (») is a flat, almost constant function of » compared with the atomic
lineshape function S(»), we can write

S: de S(v) p(v) = p(w) So dv S{(v)
= p(7) (3.8.6)

If p(») is perfectly constant, then of course (3.8.6) is an equality. Whether p (»)
is flat enough in its variation to justify the approximation (3.8.6) depends on the
lineshape fonction S(»). The narrower the width of S(»), the easier it is to satisfy
(3.8.6). When this approximation is valid we may say that we have broadband
light and broadband absorption, as opposed to the opposite extreme of narrow-
band (i.e., monochromatic) absorption. Both extremes are limiting cases of (3.8.5).

/ P
e
=
Z_:L(w):p(v}ﬂv

Z

Z

e

A
v vthy

Figure 3.9 The spectral energy density p(») is defined so that u{») = p(r) Ar is the
electromagnetic energy per unit volume in the namrow frequency interval from » to v + Ar.
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Therefore, the energy absorption rate for an atom exposed to broadband radiation
is

dw, e

2
i
& aem ) (3.8.7)

We see that for broadband absorption the rate at which the energy of the atom
increases is completely independent of the form of the lineshape function S(»),
and is simply proportional to the spectral energy density of the field at the dipole’s
natural oscillation frequency »g.

In Table 3.2 we collect the most important results of this section. For simplicity
we omit the background refractive index from the equations. This is always an
excellent approximation for gaseous media, where n, is close to unity. However,
for solid media the index must be included, We return:to this point in our discus-

TABLE 3.2 Results of the Classical Theory of Absorption by a
Medium with N Atoms per Unit Volume.

Energy Absorprion Rate of an Atom

aw, _ _&f 5 " o
g Aegm do dv S(v)p{r)  {f = oscillator strength)
ef .
= Tome S(v) 1, (narrowb.and radiation)
ef -
= Jegn p(¥;) (broadband radiation)

Lineshape Function

S(») peaks at the resonance frequency » = ¥ and
S dv S(») =1
o

Antenuarion of Intensity for Radiation of Frequency v
L(z) = 1(0) e

N
= 5 i ffici
a(v) e (»}  (absorption coefficient)
4 Ne'f (integrated abso u oefficient)
P in T
¢ degme grated absorption coefficien

‘The oscillater strength £ has been included by making the replacement (3.7.5),
&lm—~ &f fm.
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sion of laser gain in Chapter 10. We have furthermore refrained from specifying

" the form of the lineshape function S(»); the question of different lineshapes is

taken up in the following sections. The equations of Table 3.2 are valid for any

. lineshape function.

3.9 COLLISIONS AND “FRICTION” IN THE LORENTZ MODEL

* In the preceding sections of this chapter we have shown that light is strongly ab-
. sorbed when it is nearly resonant with one of the natural oscillation frequencies of

the molecules of a medium, and that absorption is due to *‘frictional”” processes
that damp out dipole oscillations. We have also shown that any frictional force in

. the Newton equation of an electron oscillator leads to a broadened absorption line,
" the lineshape being Lorentzian. We did not, however, give any fundamental ex-
. planation for the existence of frictional processes. We will now approach the ques-

tion of absorption and lineshape from a more fundamental viewpoint, focusing our

" attention on *‘line broadening’” mechanisms in gases, in order to answer the ques-

tion of the origin of the frictional coefficient 3.

Itis a well-known result of experiment that, for sufficiently large pressures, the
width of an absorption line in a gas increases as the pressure increases. This
broadening is due to collisions of the molecules and is therefore called collision
broadening, or sometimes pressure broadening. Collision broadening is the most
important line-broadening mechanism in gases at atmospheric pressures, and is
often dominant at much lower pressures as well. We will begin our stady by con-
sidering the details of collision broadening.

Our treatment of collision broadening will follow the original approach of Lor-
entz. We will find, for instance, that a kind of frictional force arises naturally as

~ aresult of collisions, and that the damping rate 8 can be interpreted as simply the

collision rate.
Let us consider the effect of collisions on an atom in the electric field of a laser
beam, We imagine collisions to occur in billiard-ball fashion, each collision lasting

© for a time that is very short compared with the time between collisions. We sup-

pose that, immediately prior to a collision, the active electrons in an atom are
oscillating along the axis defined by the field polarization, as indicated by (3.3.13).
During a collision, the interaction between the two atoms causes a reorientation

. of the axes of oscillation. Since each atom in a gas may be bombarded by other
atoms from any direction, we can assume that on the average all orientations of

the displacements and velocities of the atomic electrons are equally probable fol-
lowing a collision. This is the assumption made by Lorentz. It is an assumption
about the statistics of a large number of collisions, rather than about the details of
a single collision.

Consider a gas of atoms at a given time 7, Most atoms are not at this moment
involved in a collision. Consider in particular those atoms that underwent their
most recent collision at the earlier time #;. According to our (Lorentz’s) assump-
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tion, the average of the electron displacements and velocities for these atoms van-
ished at the time #,, since all orientations of displacement and velocity vectors
were equally probable immediately after their collision. We assume that the elec-
trons in those atoms that had their last collision at time £; obey the Newton-Lorentz
equation (2.3.7), which we write here in complex notation:

fraction‘ (3.9.4) of atoms to which it applies, and then summing (integrating) over
all possible values of earlier times #,:

{(x(n)) = S_m x(; 1)df (2, ;)

_— EED/m —i{wt — i ! — (-
gdr_zzi +wlx = iEﬂ ) (3.9.1) = § of — PaalCagCy (;) g_m dt, e /T
1 W e —w) (e 1 wy
. . o ) o ) X {1 _ = (1 + _) gilwg=w)r—n) _ (1 _ _) el(uaﬁ-u:](rufz)i'
The electron displacement for a dipole satistying this equation is obtained by com- 2 w@o 2 wy
bining the homogeneous and particular solutions in such a way that x () obeys the
initial conditions (3.9.5)

The required integrals are

dx
x(1) = (E) = 0 (3.9.2) .
t=1y 5 dtl e“(r“r,]/'r = 7 (3.9.6&)
Note that these are initial conditions applying to the ‘‘average’ atom, since we ! ) -
have assumed that all displacements and velocities are equally likely after a col- S_m dry e o=@ n) = U=afr = Py {3.9.6b)
lision. The corresponding solution to (3.9.1) will be written oT W T
i )
dr, @t (t=n) yme=f) /T '
S_m 1 ontwtijT (3.9.6¢)

x(ru)=2 —M [e""‘" - % (1 + 3) g 0l g i

wg — @

“@o
) . The average electron displacement is therefore given by
_1 (1 _ ._> emo(w.)e—m] e (3.9.3)
2 g eEy/m
(x(0) = ¢ g o7 R
wp — @

It is easy to verify that (3.9.3) is the desired solution, by checking that it satisfies
both (3.9.1) and the initial conditions (3.9.2). This solution will now be taken to
represent the average atom. Tt has this average significance even if it is not appli-
cable to any one of the atoms individually.

We wish to calculate the average electron displacement at time ¢ for atoms in
the gas, no matter when their last collision. We can obtain this by summing (3.9.3)
over all possible #;. We only need to know (at time 1) the fraction df (¢, 1) of
atoms for which the last collision occurred between #; and 7, + df. We show
below that this is given by

X[l +__i_ 1+m/cf10 i 1-w/w
27 wg—w—ifT 27 wotw+i/T

£(eky/m) it — &

el — W = Zin/r + 1/7° (3.9.7)

gnd the corresponding polarizability is

dr,
T

e*/m

df(t, 1) = e~ "7
If (1, 1) wi — w® = Zin/7 + 1/7%

(3.9.4)

afw) = (3.9.8)

where r is the mean time between collisions. The average electron displacernent

Note that, except for the term 1 /77, this is the same as (3.3.17) if we identify the
{ x(2)y for any atom at time ¢ is therefore obtained by multiplying (3.9.3) by the

frictional coefficient 8 with the collision rate 1 /7.
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The main conclusion to be drawn from our collision analysis is obvious. Given
the strong inequality
(3.9.9)

wr >> 1

which implies that the mean time between collisions is much longer than an optical
period ( ~ 10~ sec), and which is an excellent approximation in practice, the last
term in the denominator of (3.9.8) can be dropped. Then the effect of collisions is
exactly the same as the effect of a frictional damping force if we let

= collision rate (3.9.10)

5:

3 pe

However, we must not lose sight of the statistical nature of our treatment of col-
lisions. We should really say that a frictional term in the Newton equation is jus-
tified by the effects of collisions on the average. Thus we can give up the artificial
notion of friction at the atomic level, but still use all of the results derived from
it, if we reinterpret X (¢), U, ¥, and W), in Sections 3.5and 3.6 as average values
in the sense of (3.9.5). We are thus led to regard the results of Table 3.2 with the
Lorentzian lineshape function (3.6.18) as the consequences of collision broaden-
ing. The width (HWHM) of this collision-broadened lineshape function is

(3.9.11)

B 1
drg = o = z—
2z 2wr
The damping term we introduced empirically earlier in (3.2.3) may now be inter-
preted as the damping of the average electron displacement, i.e.,

4z d .
Z2 (x> + 285 () + g () = 8D Ep e T (3.9.12)

Collision broadening is often described equivalently in terms of a ‘“dephasing’”
of the electron oscillators, as follows. Immediately after a collision the phase of
the electron’s oscillation has no correlation with the precollision phase. Collisions
have the effect of *‘interrupting”’ the phase of oscillation, leading to an overall
decay of the average electron displacement from equilibrium (Figure 3.10). The
damping rate in (3.9.12) is sometimes called a “‘dephasing’” tate, in order to dis-
tinguish it from an “‘energy decay” rate. The latter would appear as a frictional
term in the equation of motion of each electron oscillator as well as in the average
equation. In the absence of any inelastic collisions to:decrease the energy of the
electron oscillators, each oscillator would satisfy the Newton equation (2.3.7) with
no damping term. Due to elastic collisions, i.e., collisions which only intermpt
the phase of oscillation but do not produce any change in energy, the average
electron displacement follows equation (3.9.12), which includes damping.
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collision

collision collision

t

Figare 3.10 Electron oscillations in three different atoms in a gas. Collisions completely
interrupt the phase of the osciliation. The average electron displacement associated with all
the atoms in the gas therefore decays to zero at a rate given by the inverse of the mean
«collision time.

To complete our derivation of (3.9.7), we must prove our assertion (3.9.4). The mean
time between collisions, 7, is obviously an average; a given atom certainty does not have
collisions in evenly spaced intervals of time 7. We can only say that the probability of any
‘given atom having a tollision in a small time interval Az is given by Az times the mean
number of collisions per unit time, 1/7. If at time 7 there are (T atoms which have not
‘vet had z collision since the time T = 0, then the nomber of “collisionless’’ atoms at time
T+ AT

7T+ AT) = n(1) = (D) 2 (3.9.13)

In -words, -r?(T) decreases by the amount n(T) AT /7, which is the number of atoms col-
lisionless since the time T = 0, times the probability that any one such atom will have a
‘coltision in the time interval AT. Thus

nIx aT) —alf) (D) (3.9.14)
‘The limit AT — 0 gives the simple differential equation
) . Ly (3.9.15)
‘With the solution
; 7(T) = noe ™" (3.5.16)
.S'ihce 7q is the total number of atoms in the gas, the quantity
' P(T) = e /" {3.9.17)
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is the probability that a given atom has had no:collision for a time T, At T = 0, when we
begin “‘looking," this probability is unity. For T >> 7 it is very small, because in all
likelihood the atom will have a collision before many collision times 7 have elapsed.

The probability that a given atom will have no collision fora time 7, and then have a
collision within a time interval &7, is just the product of the probabilities for these two
“events', i.c., P(T) 4T/ r. This is just the fraction df (T, of the total number of atoms,
that can be expected to have their next collision within the time interval from Tto T + 4T,
after we begin “*looking™ at T = 0, If we imagine a movie showing the movements and
collisions of the atoms, we can run our film backwards in time and the collisions will exhibit
the same statistical behavior. And we will observe the same statistical behavior regardless

of where we begin looking.

The atoms at time ¢ that had their last collisions in the interval from 1, to £, + d; will
be just those having their next collision in the same interval when we look at the gas back-
wards in time beginning at time ¢. Thus the fraction df (¢, &) of atoms at time ¢ that had
their last collision in an interval dr, of £, < ¢ 'will be the same as the fraction of atoms at
time ¢ which will have their next collision in an interval dt; of 1; when the film is run
backwards, This is just the probability P(T) dt, /7 found above, with 7 = ¢ — #,. Thus

dt
. (3.9.18)

df (5 1) = P(t = t,).% = et

which is the same as (3.9.4). *

3.10 COLLISION CROSS SECTIONS

We have shown in the preceding section that collisions, on average, can produce
the same effect as frictional damping on an electron oscillator. The damping rate
8 can be identified with the collision rate 1/7. Therefore the magnitnde of 1 fris
of direct significance for realistic estimates of line broadening.

The collision rate 1/7 may be expressed in terms of the number density Nof
atoms, the collision cross section ¢ between atoms, and the average relative ve-
locity ¥ of the atoms. Imagine some particular atom to be at rest and bombarded
by a stream of identical atoms of velocity 7. If the number of atoms per unit
volume in the stream is N, then the number of collisions per unit time undergone
by the atom at rest is No@, where the arez o is the collision cross section between
the atom at rest and an atom in the stream, The number of collisions per second
is the same as if all the stream atoms within  cross-sectional area o collide with
the stationary atom. The idea here is exactly the same one used to define scattering
and absorption cross sections for incident light,

According to the kinetic theory of gases, an atom of mass m, hias an rms velocity

( 8kT) 12
Vs =
T,

in a gas in thermal equilibrium at temperatre 7, where £ is Boltzmann’s constant.

(3.10.1)
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f[‘i.j obtain the average relative velocity T of colliding atoms of masses m, and ,
ini the gas, we replace m, in (3.10.1) by the reduced mass

P A S A
o e m “”‘1:4“% (3.10.2)
- _[SkT(l N 1)}’/2
w — |7\ -
_\ m \m " m (3.10.3)

It is convenient to express this in terms of the atomic (or molecular) weights M,
X

d M,
_ [SRT(l 1\
Uy = |— 1 — + —
T A\M, Myﬂ

where R, the uniyc?rsal gas constant, is Boltzmann’s constant times Avogadro's
number. The collision rate for molecules of type x is therefore

(3.10.4)

% = ; N(Y)o(X, Y) (X, ¥)

= %}N(Y)U(X, 1) [3_?' (MLX . Miy)}l/z

Wwhere tl:xc sum is over all species y, including x.

’I:he important ““unknowns’’ in the expression (3.10.5) are the collision cross
ect(xlci)%s a{X, Y).‘It often hafppens that these are not known very accurately. They
re difficult to derive theoretically, and experimental determinations are not always

nambiguous, The simplest approximation to the ion i
narmbiguou CTO8S section is the ““hard- ™
pproximation. We write erd-sphere

(3.10.5)

FX, ¥) = %(d,, +d) (3.10.6)

here d, :emd d, arc the **hard-sphere™* molecular diameters, estimates of which
;sometimes tabulated. 7(X, ¥') is just the area of a circle of diameter d. + o
t what we would expect if the molecules acted like spheres of d.iametersx d arré
or CO;, for example, the hard-sphere diameter is about 4.00 A. l;mm
- .6), therefore, the hard-sphere cross section for two CO, molecules is (CO
2) = 5.03 x 10" em®. For a gas of pure CO, at T = 300 K we find thzc:,
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. - 3
average relative velocity of two colliding CO, molecules to be Uy = '5.3? X 10
em /sec. The collision rate (3.10.5) in the ““hard:sphers’” approximation is there-
fore '

1 N(5.03 x 107" cm®) (5.37 % 10* em/sec)
,

=2.70 x 107'%/sec (3.10.7)

where N is the number of CO, molecules in a cubic centimeter, For an ideal gas
we calculate (Problem 3.5)

P(Torr)

N =965 % 10" (3.10.8)

where P(Torr) is the pressure in Torr (1 atmosphere. = 760 Torr) and T is the
temperature (K). From (3.10.7), finally, the collision rate for a gas of CO, at 300
Kis
1_ g6 x 10%P(Torr) sec™ (3.10.9)
7

Thus at a pressure of 1 atmosphere (760 Torr) we calculate the collision rate

L _ 660 x 10° sec™ (3.10.10)
T

and from (3.9.11) the collision-broadened linewidth
8wy = 1.05 x 10° Hz (3.10.11)

The actual collision-broadened linewidths can be larger, by as much as an order
of magnitude or more, than those calculated in the hard-sphere apprOxi'matlon. The
value calcalated above, however, is reasonable, and it allows us to point Out some
general features of the collision-broadened linewidths. First we note that the col-
lision rate (3.10.10) is very much smaller than an optical frequency, as as;urfled
in (3.9.9). The linewidth 8, is thus also orders of magnitude less t!wn an optical
frequency. This explains why we can speak of absorption “‘lines’”” in a gas, even
though the absorption occurs over a band of frequencies: the band has a width
( ~28wp) that is very small compared with the resonance frequency »q.

3.11 DOPPLER BROADENING 101

From (3.10.9) we note that the linewidth is linearly proportional to the pressure.
For this reason, experimental results for collision-broadened linewidths are often
reported in units such as MHz-Torr™ ', The linewidth calculated above, for in-
stance, may be expressed as 1.38 MHz-Torr™" at 300 K.

Our treatment of collision broadening only highlights some general features of
a complex subject. In actual calculations we prefer always to use measured values
of the collision-broadened linewidths. We note parenthetically that, for the 10.6-
pm CO, laser line, the linewidth (1.38 MHz-Torr™") computed above is about
three times smaller than the experimentally determined value. It is possible to
calculate these widths more accurately, but this will not concern us.

1

3.11 DOPPLER BROADENING

The Doppler effect was demonstrated for sound waves in 1845 by C. H. D, Buys
Ballot, who employed trumpeters performing in a moving train to demonstrate it.
The mathematiclan C. J. Doppler had predicted the effect in 1842, His prediction
applied also to light, although Maxwell’s electromagnetic theory of light waves
was still nearly a quarter of a century away.

Let us consider again a gaseous medium, this time only very weakly influenced
by collisions (i.e., 8 is very small). Every electron oscillator will thus undergo
practically undamped oscillation at the field frequency. Nevertheless we will show
that, because of the Doppler effect, an absorption line is broadened and its width
can be much larger than 8. We will find that the lineshape associated with the
Doppler effect is not the Lorentzian function (3.6.18), but rather the Gaussian
function given in (3.11.6) below.

To an atom moving with velocity v << ¢ away from a source of radiation of
frequency », the frequency of the radiation appears to be shifted:

V'=V(1~E>
c

(3.11.1)

This is the Doppler effect. It implies that a source of radiation (e.g., a laser) exactly

resonant in frequency with an absorption line of a stationary atom will not be in
resonance with the same absorption line in 2 moving atom, and the frequency offset
isd» = (v/c)v. Similarly, a nonresenant absorption line of an atom may be brought
into resonance with the field as a result of atomic motion. Since the atoms in a gas
exhibit a wide variety of velocities, a broad range of different effective resonance
frequencies will be associated with a given absorption line. In other words, the

. absoeption line is broadened because of the Doppler effect. The absorption line is

thus said to be Doppler-broadened.

For a gas in thermal equilibrium at the temperature T, the fraction df{z) of
atoms having velocities between v and v + dv along any one axis is given by the
(one-dimensional) Maxwell-Boltzmann distribution,
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3112
27kT ( )

1/2

df(v) = <_l1'x__> evmxvz/zfc?’dv

Here again k is the Boltzmann constant and m, is the mass of an atom or molecule.

Because we have assumed that collisions are almost negligible, an atom with res-

onance frequency v, and velocity » moving away from the source of radiation will
only absorb radiation very near to {within Az = §/2x of) the frequency

¥y = V0<1 +’:_:)

The fraction of atoms absorbing within the frequency interval from » to v + dv is
thus equal to the fraction of atoms with velocity in the interval from © to v + dv.
From (3.11.3) we have

(3.1L.3)

v =< (v — %) (3.11.4)
¥g

and dv = (c/¥,) dv. Using (3.11.2) we can determine that this fraction is

1/2
d(v) = (T‘fiér) ¢ T (ﬁ dv) (3.11.5)

Yg

Since the absorption rate at frequency » must be proportional to df, (v), we may
write the Doppler lineshape function as

02 1/2
S(») = ( il ) g M ) /2T (3.11.6)

2akTvs

Since (3.11.2) was normalized to unity when integrated over velocity, (3.11.6) is
normalized to unity with respect to the frequency offset (or **detuning’”) ¥ — ¥,
as required by the definition of lineshape fanction.

By direct computation using (3.11.6) we find

S dV S(V) = S(yo) S dl’ e—rrfxcz(l'—-vo)z/ZkTv%
e 0

R

—¥g

= S(2) S dyp €U

—oa
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- st 2 (221) "]

We have used the excellent approximation kT << m,¢” to replace the lower limit
f the integral by — oo, Thus we may write

(3.11.7)

1/2
¢ mx —Hit. »— Y,
(v) = %(Tkr) e (o) /2T (3.11.8)
: "It\ is convenient to define
kT 1/2
dyp =22 (‘;;1*"— In 2) (3.11.9)
x
n terms of which
1 /am2\'* _
S(v) = g;;( - ) Ao in 2/brh (3.11.10)

: and we recognize that vy, is the width (FWHM) of the Doppler absorption curve,
rsince

S(vo = L dvp) = S(vg) e =1 §(y) (3.11.11)

“bvp is commonly called the Doppler width (Figure 3.11). The Doppler width is
dlso often defined in terms of the 1/¢ point of the curve, rather than the half-
‘maximum point. Sometimes it is defined as the half width at half maximum
(HWHM) rather than the FWHM. Thus one finds formulas in the literature differ-
ing by factors of 2, In 2, etc. It is important to keep these possible differences in
mind when comparing calculations.

The peak of the Doppler curve at » = v, has the value

1 /41n2\'/?
§(w) = on (—) (3.11.12)

a®

_where :S(vo) is evidently the peak value of 5(»), for which » = vo. S(wp) is
..:-dctemuned from the normalization condition 3.11.7.
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Doppler Tlineshape
S(v)
0 1

Figure 3.11 The Doppler lineshape function.

In terms of the molecular weight M, and the wavelength Ny = ¢/ of the
absorption line, the Doppler width is

2 (2RT L2
av,J:fG( 1n2>

M,

X

1 T‘/T
=215 x 102 | — (=
213 x 10 [M<Mx>

where Xp is expressed in angstroms, M, in grams, and T in kelvins, In these same
units the formula

(3.11.13)

Svp . T: /2
—= = 7.16 X —
L) 10 (Mx>

for the ratio of the Doppler width to the resonance frequency is also useful.

The Doppler width depends only on the transition frequency, the gas tempera-
ture, and the molecular weight of the absorbing species. It is therefore much sim-
pler to calculate than the collision-broadened width, which involves the collision
cross section. As an example, consider the 6328- A line of Ne in the He—-Ne laser.
Since My, = 20.18 g for Ne, we obtain from (3.11.13) the Doppler width

(3.11.14)
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Svy, = 1500 MHz (3.11.15)

for T = 400 K. For the 10.6-pm line of CO2 and the same temperature, however,
find a much smaller Doppler width:

- 61 MHz

Svp ~ (3.11.16)

12 THE VOIGT PROFILE

plcr broadening is an example of what is called inhomogeneous broadening.
Th term inhomogeneous means that individual atoms within a collection of oth-
ise identical atoms do not have the same resonant response frequencies. Thus
atoms in the collection can show resonant response over the available range of
squencies. This is true even though the atoms are nominally identical. In the
Doppler case this is because individual (nominally identical) atoms can have dif-
tent velocities. These different velocities serve as tags or labels for the individual
atoms, and any discussion of the behavior of a sample of such atoms must take
account of all the velocity labels.
" There are other possible inhomogeneities that have the same effect as the
Doppler distribution of velocities. For example, impurity atoms embedded ran-
domly in a crystal are subjected to different local crystal fields due to strains and
defects. These have the effect of shifting the rescnance frequency of each atom
slightly differently. The distribution of such shifts acts very much like the Doppler
distribution, and gives rise to an inhomogeneous broadening of the absorption line
sociated with the nominally identical impurity atoms subjected to different local
ficlds in the crystal. This type of random strain broadening is present in the Cr**
¢ associated with ruby laser light, for example.
-:_The line broadening associated with collisions is different, and is called ho-
ogeneous. This is because each atom can itself absorb light over a range of fre-
guencies, due to the interruptions of its dipole oscillations by collisions. Since the
\lisional history of every atom is assumed to be the same, no greater collisional
broadening is associated with the collection of atoms than is associated with an
dividual atom.
' In" general we cannot characterize an absorption lineshape of a gas as a pure
ollision-broadened Lorentzian or a pure Doppler-broadened Gaussian. Both phase-
interrupting collisions and the Doppler effect may play a role in determining the
lineshape. We will now derive the Voigt profile, describing the absorption line-
shape when both collision broadening and Doppler broadening must be taken into
account.
‘Equation (3.6.18) gives the collision-broadened lineshape for each atom in the
gas. If an atom has a velocity component » moving away from the source of light
of frequency » = vy, its absorption curve is Doppler-shifted to
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(1/7)dwy
S(v, = - 3.121
. (vo—» + vv/c)Z + 85 ¢ )

{n other words, the peak absorption for this atom will occur at the field frequency
v such that (3.11.3) is satisfied:

y = vy + "—ZE (3.12.2)

The lineshape function for the gas is thus obtained by integrating over the velocity
distribution (3.11.2):

[ ]

1/2
501 - N

i dv 8y, v)l <2wRT

( M, >1/2% Sm dy e~ M 2R
T dew (pg — ¥+ vov/c)z + v}

[

1 S‘” dye™
T2 bvg d-o (y + 2)° + B

(3.12.3)

where we bave made the change of variables (Problem 3.6)

x=(@m2)" "°3;" z (3.12.4)
D
and we have defined
b=(4m2)”? i;f‘l (3.12.5)
fal

The lineshape function (3.12.3) is called the Voigt profile.
In the case when the applied field is tuned exactly to the resonance frequency

v, we have x = 0 and therefore

(3.12.6)

P = dye™
S(wp) = 7r3/2 . S% Frr
0 oo
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‘The integral may be looked up in a table of integrals. It is found that

” dye” T e
S_m Fam o pf @ (3.12.7)
2 7. .
erfc (&) = =7 ), due (3.12.8)

_ﬁhe complemfznrary error function. From (3.12.6) and (3.12.7), therefore, the
ineshape function for the resonance frequency » = v, has the value

¥ o
S(VO) = *,'['3/2 . E eb2 erfc (b)
1]

b 2
— ¢ erfe (b
'ﬁ'l/z 6?’0 ( )

sm2\"* 1 .
M< - ) e erfc (b) (3.12.9)

“furiction is plotted for several values of the parameter & in Figure 3.12.
(v) depends strongly on the ratio of the linewidths for collision and Doppler

br idening. When the collision width 8v, is much greater than the Doppler width

we have b >> 1. For large values of b it is known that

10
08

bZ
e%erfe(b) vs. b

{

0157 o0
04 r

02

b —
Figure 3,12 The function Perfc ().
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1
bz
e erfc (b) =
( ) wllzb

(3.12.10)

(b >> 1)

In this “‘collision-broadened limit,”” therefore, we have from (3.12.9) the result

(B >>1) {3.12.11)

i
S(VO) = TFISVQ

which is exactly the result (3.6.20) for the case of pure collisionl b_roadcning. In
the limit in which the Doppler width is much greater than the collision broadened
width, on the otber hand, we have b << 1, in which case the function

Fefc(b) =1 (b<<1) (3.12.12)
Then from (3.12.9) we have
1/2
S(wy) = s (4 mz) (b << 1) (3.12.13)
BVD iy

which is the result (3.11.12) for pure Doppler broadening. The limits d» >> orp
and dvy << 8vp thus reproduce the results for pure collision broadening and pure
Doppler broadening, respectively. In general, for arbitrary values of b, S(#),
given by (3.12.9), must be evaluated by using tables of erfc (b). )

For the general case of arbitrary values of both the parameter b and the detoning
parameter x, the lineshape function §(») given by Eq. (3.12.3) must be evaluated
from tabulated values of the more complicated function

r dye” _Z‘ZRB(LS _f%i)
—o (y+x) B P T J-wx +y+ib

(3.12.14)

% Re w(x + ib)

where w is the ““error function of complex argument.”” Numerical values are tab-
ulated in various mathematical handbooks.?

In Table 3.3 we summarize our results for collision breadening and Doppler
broadening, as well as the more general case of the Voigt profile. Tables 3.2 -zmd
3.3 together summarize the results of our classical theory of absorption. With slight

3. See, for example, M. Abramowitz and |, A. Stegun, Handbook of Mathematical Functions (Dover,
New York, 1971}, pp. 325-328.
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collision Doppler far-wing
G

{a) (b) - (c)

gire 3.13 Sketch of factors in the integrand of (3.12.3) in three limiting cases: (a) col-
ian-broadened limit, (8) Doppler-broadened limit, (¢} far-wing limit.

sdifications, these formulas are basically the same as those given by the quantum
¢ory of absorption. The case of gain, or *‘negative absorption,” is also described
“yery similar formulas. Thus the results of our classical theory will prove to be
far more relevant to the operation of lasers than one might at first suspect. Indeed,
will refer back to Tables 3.2 and 3.3 in our study of lasers,

Without going to numerical tables, and even without a study of the asymptotic properties
Ww(x + ib), it is possible 1o evaluate the Voigt integral (3.12.3) in several limits because
oth factors in the integrand are normalized lineshapes themscives, There are three limits
of interest, as shown in Figure 3.13.

Collisional Limit (dvy >> 8vp): In this case S(», v} is very broad and slowly varying
‘sivipared to the narrow Gaussian velocity distdbution (Fig. 3.134). Since the Gaussian is
rmalized to unity it acts like the delta function 8(v), and the Voigt integral reduces to the
result S(») = S(», v = 0}, which is just the original collisional Lorentzian lineshape given
3.6.18).

Doppler Limit (8vp >> 8wp): In this case the reverse is tue (Fig. 3.13#), and the colli-
nal function S(», ) acts like the delta function 8(»; ~ » + wr/c). Thus the Voigt
tegral gives back the Gaussian function (3.11.10). Except at high pressures or in cases
here the Doppler distribution is altered by beam collimation it is usually valid to assume
it the inequality 8ry >> Oy is accurate and the Doppler limit applies.

Wing Limit (|v — »y| >3 &vp, 6wg): This case tefers to the spectral region far from
liné -center, far outside the halfwidths of either the collisional or Doppler factors in the
oigt integrand. Thus the integrand is the product of two peaked functions. Each peak falls
in‘the remote wing of the other function (see Fig. 3.13¢). Here the qualitative difference
tween Gaussian and Lorentzian functions is significant, The Gaussian is much more com-
ct.- It falls to zero much more rapidly than the Lorentzian. Because the Lorentzian’s wings
falling relatively slowly, as 1/»* for large », it still has nonzero value at the position
e Gaussian peak. However, the value of the Gaussian function is effectively zero by
comparison near the Lorentzian’s peak. Thus the conttibution of the Gaussian function in
Lorentzian wing is much greater than that of the Lorentzian function in the Gaussian
ing, and the Voigt integral can be replaced by (3.6.18) in its far wing:

S(y) = M (3.12.15)
(» — n)

;_ng"even if the broadening is principally Doppler, not collisional (dzp > Bwp).

lis resblt is anomalous in the sense that the lineshape behaves like a Lorentzian in the far
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mate the collision broadening linewidth of the 5890-A line in pure sodium

TABLE 3.3 Collision, Doppler, and Voigt
vapor at 300 X to be

Lineshapes

8wy = 1700P(Torr) MHz (3.13.2)

Collision-Broadening Lineshape
o ¢ g he ratio b of Table 3.3 is therefore

b = 2.2P(Tom) (3.13.3)

P(Torr) is less than, say, about 0.1 Torr, we are in the ' Doppler regime.” In
this case the absorption coefficient for narrowband light exactly resonant with: the
5_890-A absorption line is found from Table 3.2 at the end of Section 3.8 to be

= (1/7r) By
(v — wo)* + 80

S(»)

5 collision rate
by = ———
o 2

Doppler-Broadering Lineshape alv) = 4ﬁ N 8(vp)
€t
& 1 (4 In 2)

degme  vg T

S(y) =~ 2T WP/ 1/2

1 T 1/2
Svp = 2.15 X 10‘{)—0 (5—4) ]MHZ

(3.13.4)

“or the sodium D lines the oscillator strength--the factor f—is of order unity. In
fact:the 5890- and 5896-A lines have oscillator strengths of 0.355 and 0.627,
T = gas temperature (K} _ ectively, From (3.13.4), (3.13.1), and (3.10.8), therefore, we obtain
M = molecular weight of absorber (g)

Ao = wavelength (A) of absorption line

a(r) = 2.2 x 10°P(Torr) em™ (3.13.5)

hich is valid provided the pressure is small enough that Doppler broadening pre-

Voigr Lineshape ails.-For narrowband light of frequency v not necessarily equal to », we have

av) = 2.2 X 10°P(Torr) g~ ~ )% in 2/5% oy ! (3.13.6)

o

.939

S(V) - 5!’0

Rz w(x + ib) e
n.Figure 3.14 we have plotted the transmission coefficient

% = g7t (3.13.7)

w = emror function of complex argument ¥ =y £ 28y,

¥ = 1y 2158y,

3.13 EXAMPLE: ABSORPTION BY SODIUM VAPOR °
. (v)

Let us consider an example of the use of Tables 3.2 and 3.3, Consider the 5850 gy 2

A absorption line of sodium vapor at 300 K. The Doppler width is

1 /300 "2]
12 v
Svp = 2.15 x 10 [5890 (23) Bz

= 1300 MHz {3.13.1

since the atomic weight of sodium is My, = 23 g. From tabulated data we can.

Figure 3.14 Transmission coefficient for
5890-A radiation in sodium vapor at T =
300K, P = 5 x 107% Torr. In this case the
absorption line is Doppler-broadened, with
By = 1300 MHz. The four curves illustrate
the high selectivity of the absorption pro-
z{em] — cess.
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for nearly monochromatic light of slightly differsnt frequencies. It is evident that
the transmission coefficient has an extremely strong dependence on the detuning
¥ — pp. The deruning of the field frequency » by just a very small fraction of »
from the resonance frequency vy, results in a very sharp increase in the transmission
coefficient. Similar results apply at higher pressures, where collision broadening
becomes important.

PROBLEMS

3.1

3.3

3.4%

36

Assume the “‘spring constants’” k for the binding of electrons in atoms are
approximately the same as those for the binding of atoms in molecules. If
v = 5 X 10" Hz is a typical electronic oscillation frequency, estimate the
range of frequencies typical of atomic vibrations in molecules, given typical
electron—atom mass differences. Does your estimate indicate that molecular
vibrations lie in the infrared region of the spectrum?

The atomic weight of lithium is 6.939 g, and the density of lithium is 0.534
g /cm’. Assuming each lithium atom contributes one electron to the ““free-
electron gas,”” calculate the plasma frequency »,. For what wavelengths
wonld you expect lithitm to be transparent? (Note: The transparency of the
alkali metals in the vlfraviolet was discovered by R. W. Wood in 1933.)

The addition of an ohinie current density to Maxwell™s equations leads to
the wave equation (3.5.6). Show this by adding J = oK to the right side of
(2.1.4) and then retracing the derivation of the wave equation (2.1.13).

Derive the equation for classical “‘laser amplification’ by substituting

(3.5.2) into (3.5.6), allowing E, 10 be time-dependent: £, = E (7). It is

sufficient to assume that E, (1) is slowly varying so that terms proportional

to d°F,,/dt* can be discarded.

(a) Obtain the equation for JE, /dr.

(b) Use the approximations and abbreviations given in Egs. (3.5.7)—(3.5.10)
0 show that d|E,|2/dt = 0if g = o /ec.

(¢) Sketch on one graph the behavior of E,(#) vs. t obtained from the so-
tution of the equation for d| E, [*/dr under the (unrealistic) assumaption
that g = 20 /eyc, and the (more realistic) assumption that g = —20 /egc.

Show that the number of atoms (or molecules) per cm’ of an ideal gas at
pressure P and temperature 7'is given by (3.10.8).
a. Verify Eq. (3.12.3).

b. Using Egs. (3.4.9) and (3.4.11), show that in the absence of back-
ground atoms

3.7

8
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N c
—_ 1 — —
ne(v) = i ™ ale), hy= Vo

This .equation relates the refractive index near a collision-broadened ab-
sorption line to the absorption coefficient.

Althoug'h the relation derived in Problem 3.6 applies to the case of collision
brqadcnmg, a similar relation holds more generally. Show in the case of a
Voigt profile that

o _Amw(x +ib)
) = 1= 2 as w(x + ) 2
where w, x, and b are defined in Section 3.12,

[N ote: The relation between the refractive index and the absorption
coeflicient (or, equivalently, between the real and imaginary parts of
the complex refractive index) is a special case of the so-called Kramers—
Kronig relations. Such relations may be derived on very general grounds
based on causality. )

Esl;im.at‘e the absorption coefficient for 5890-A radiation in sodium vapor
containing 2.7 X 10" atoms /em® at 200°C. [See J. E. Bjorkholm and A,
Ashkin, Phys. Rev. Letz. 32, 129 (19741,

The CO, molecule has strong absorption lines in the neighborhood of A =
10 pm. Assuming that the cross sections of CO, molecules with N, and 0,
molecules are 6(CO,, N;) = 120 A and 6(CO,, 0,) = 95 A2, estimate
tl_ua collision-broadened linewidth for CO; in the earth’s atmosphere. (Note:
since the concentration of CO, is very small compared with N, and O, in
air, you may assome that only N»~CO, and 0,-CO, collisions contribute to
the linewidth.) Compare this with the Doppler width,

Congider the absorption coefficient a{»,) of a pure gas precisely at reso-
rance. Show that a (v, ) is proportional to the nurnber density of atoms when
the a.bsorption line is Doppier-broadened, but is independent of the number
density when the pressure is sufficiently large that collision broadening is
dominant.





