
64 CLASSICAL DISPERSION THEORY 

2.10* Consider the electron oscillator model for the case in which there is no field 
acting on the atom. Suppose that at t = 0 an electron is given the displace­
ment Xo from equilibrium, and the velocity vo. 
(a) Show that the electron coordinate x ( t) is given by 

Vo . 
x(t) = Xo cos w0 t +- sm wot 

Wo 

(b) What is the total (kinetic plus potential) energy of the electron? 

(c) Using the formula (2.5.14), derive an expression for the rate at which 
the oscillating electron radiates electromagnetic energy. Give the rate 
averaged over times long compared with the period of oscillation. 

(d) Show that the electron can be expected to radiate away most of its en­
ergy in a time 

(2e'w~)-' 7 = 4'11"~:: 0 ---
3mc3 

This is the classical picture of "spontaneous emission," which we con­
sider in Chapter 7. 

(e) Estimate numerically the ""radiative lifetime" -r found in part (d) for 
the case of an electron oscillating at an optical frequency Po( =wo/211"). 

2.11 Show that the scattering cross section for radiation of frequency w much 
greater than the natural oscillation frequency w0 is given by the Thomson 

formula 

where r0 = c? j411"e0 mc2 is called the ''classical electron radius." What is 
the magnitude of r0? 

2.12 A typical He-Ne laser operating at 6328 A contains about five times as 
much He as Ne, with a total pressure of about one Torr. The length of the 
gain cell is about 50 em. Estimate the fraction of laser radiation intensity 
lost due to Rayleigh -scattering in passing a billion times through the gain 
cell. (Note: For STP Ne the constants in (2.4.9) are A = 6.66 X 10-5 and 
B = 2.4 x 10-11 cm2.) This illustrates the fact that Rayleigh scattering is 
usually very weak in gas laser media. 

*Starred problems are somewhat more difficult. 
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3 CLASSICAL THEORY OF 
ABSORPTION· 

3.1 INTRODUCTION 

Most objects around us are not self-luminous but are nevertheless visible because 
they scatter the light that falls upon them. Most objects are colored, however, 
because they absorb light, not simply because they scatter it. The colors of an 
object typically arise because materials selectively absorb light of certain frequen­
cies, while freely scattering or transmitting light of other frequencies. Thus if an 
object absorbs light of all visible frequencies, it is black. An object is red if it 
absorbs all (visible) frequencies except those our eyes perceive to be "red" (wave­
lengths roughly between about 6300 and 6800 A), and so on. 1 

The physics of the absorption process is simplest in well-isolated atoms. These 
are found most commonly in gases. White light propagating through a gas is ab­
sorbed at the resonance frequencies of the atoms or molecules, so that one observes 
gaps in the wavelength distribution of the emerging light. On a spectrogram these 
gaps appear as bright lines on the dark, exposed background. The_ gaps, shown as 
lines in Figure 3.1, correspond to the absorption of sunlight by the atmosphere of 
the sun before the light reaches the earth. The absorbed energy is partially con­
verted into heat (translational_kinetic energy of the atoms) when excited atoms (or 
molecules) which have absorbed radiation collide with other particles. The ab­
sorbed radiation is also partially reradiated in all directions at the frequency of the 
absorbed radiation. This is called resonance radiation, or resonance fluorescence. 
When the pressure of the gas is increased, collisions may rapidly convert the ab­
sorbed radiation into heat before it can be reradiated. In this case the resonance 
radiation is said to be quenched. 

Most atoms have electronic resonance frequencies in the ultraviolet, although 
resonances in the visible and infrared are not uncommon. Sodium, for instance, 
has strong absorption lines in the yellow region at 5890 and 5896 A, the Fraun­
hofer ""D lines,'' and their position is indicated in Figure 3 .1. 

Electronic resonances in molecules also tend to lie in the ultraviolet. We have 
"white" daylight because the atmosphere, consisting mostly of N2 and Oz, does 
not absorb strongly at visible frequencies. 

In molecules the separate atoms act approximately as if they were connected to 
each other by springs, so that entire atoms vibrate back and forth. Atoms are of 

1. The principal features of the electromagnetic spectrum for our purposes are summarized in Table 
3 inside the cover of the book. 
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Figure 3.1 Absorption lines of the sun's atmosphere. The Fraunhofer D lines of sodium at 
5890 and 5896 A are not resolved in this sketch. 

course much more massive (by 103-105 times) than electrons, and the natural vi­
brations of molecules are consequently slower. We can estimate, on the basis of 
this mass difference (Problem 3.1), that molecular vibration frequencies should lie 
in the infrared portion of the electromagnetic spectrum. 

A molecule as a whole can also rotate; the resonance frequencies associated 
with molecular rotations lie in the microwave portion of the spectrum. Molecules 
therefore typically have resonances in the ultraviolet, infrared, and microwave 
regions of the spectrum. 

Absorption in liquids and solids is much more complicated than in gases. In 
liquids and amorphous solids such as glass, the absorption lines have such large 
widths that they overlap. Water, for example, is obviously transparent in the vis­
ible, but absorbs in the near infrared, i.e., at infrared wavelengths not far removed 
from the visible. Its absorption curve is wide enough, in fact, that it extends into 
the red edge of the visible. (Figure 3.2) The weak absorption in the red portion of 
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Figure 3.2 Absorption coefficient of water. 
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the visible spectrum explains why things appear green when one is sufficiently 
submerged under water. 

A broad absorption curve covering· all visible wavelengths except those in a 
particular narrow band is characteristic of the molecules of a dye. The absorbed 
radiation is converted into heat before it can be reradiated. Such broad absorption 
curves and fast quenching rates require the high molecular number densities of 
liquids and solids. 

In metals some of the atomic electrons are able to move freely about under the 
influence of an electromagnetic field.- The fact that metals contain these "free" 
electrons explains, of course, why, they are good conductors of electricity. In the 
free-electron approximation we may apply the dispersion formula (2.4.12). The 
plasma frequency wP for metals is usually in the ultraviolet (Problem 3.2). Thus 
visible frequencies ( w < wp) cannot penetrate into the metal. They are completely 
reflected, just as AM radio waves are reflected by the ionosphere. This strong 
reflection gives metals their shine. In a metal like gold there is also absorption, 
associated with the electrons that remain bound to atoms, and it is this that gives 
the metal a characteristic color. 

In a solid that is a good electrical insulator, the electrons are tightly bound, and 
consequently the natural oscillation frequencies are high, typically corresponding 
to wavelengths less than 4000 A. An insulator, therefore, is usually transparent 
in the visible but opaque in the ultraviolet. In semiconductors the natural oscilla­
tion frequencies are smaller. Silicon, for example, absorbs visible wavelengths (it 
is black), but transmits radiation of wavelength greater than one micron ( 1 micron 
= I J.tffi). 

Lattice defects (deviations from periodicity) can substantially modify the ab­
sorption spectra of crystalline solids. Ruby, for instance, is corundum ( Al20 3 ) 

with an occasional (roughly 0.05% by weight) random substitution of Cr+3 ions 
in place of Al +3

• The chromium ions absorb green light and thus ruby is pink, in 
contrast to the transparency of pure corundum. 

The variety of natural phenomena resulting from the selective absorption of 
certain wavelengths and the transmission of others is too broad to treat here. We 
mention only one important example, the "'greenhouse effect. " 2 Visible sunlight 
is transmitted by 1he earth's atmosphere and heats (by absorption) bo1h land and 
water. The warmed earth's surface is a source of thermal radiation, the dominant 
emission for typical ambient temperatures being in the infrared. This infrared ra­
diation, however, is strongly absorbed by C02 and H20 vapor in the earth's atmo­
sphere, preventing its rapid escape into space. Without this effect, the earth would 
be a much colder place. An increased burning of fossil fuels could conceivably 
enhance the greenhouse effect by increasing the level of C02 in the atmosphere. 

2. The term "greenhouse effect" is actually a misnomer, originating in the observation that the glass 
in a greenhouse. which is transparent in the visible but opaque to the infrared, plays an absorptive role 
similar to that of C02 and H20 in the earth's atmosphere. This effect, however. does not contribute 
significantly to the warming of the air inside a real greenhouse. A real greenhouse mainly prevents 
cooling by wind currents. This point was demonstrated experimentally by R. W. Wood (1909), al~ 
though the contrary misconception persists even among scientists. 
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68 CLASSICAL THEORY OF ABSORPTION 

3.2 ABSORPTION AND THE LORENTZ MODEL 

The strength of an electromagnetic field will be reduced in transit through a ma­
terial medium if the atoms (or molecules) of the medium can absorb radiant en­
ergy. More commonly than not, in a wide variety of materials, absorption can be 
explained by the assumption that the Lorentz electron oscillators introduced in 
Chapter 2 are subject to a frictional force. The origin of a .. frictional" force is 
itself a subject for discussion, which will be found in Section 3.9. For the moment, 
however, we will take a frictional force for granted, and explore its consequences. 

We simply amend the Newton force law (2.2.18) to read 

d2x 
m dt' = eE(R, t) - k,x + F,ri, {3.2.1) 

and we make the simplest assumption compatible with the idea of frictional drag: 

dx 
Ffric = -bv = -b­

dt 
(3.2.2) 

Then the Newton equation of motion (2.3. 7) for an electron oscillator in a linearly 
polarized monochromatic plane wave takes the form 

d"x dx 2 e 
- 2 + 2{3 -d + w 0 x = il- E0 cos (wt- kz) 
dt t m 

(3.2.3) 

where for later convenience we have defined 

/3 = .!:... 
2m 

As in Chapter 2 we have introduced the natural oscillation frequency 

- (0.)1/2 
Wo-

m 
(3.2.4) 

associated with Lorentz's elastic force. 
If there is no applied field, Eq. (3.2.3) becomes 

d"x dx 
dt' + 2{3 dt + w5x = 0 (3.2.5) 

R 

~L C=p 
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Figure 3.3 An u?.C ci~uit. The charge on the capacitor 
obeys the equation of motion (3.2.6) for a damped oscillator. 

This is the equation describing a damped oscillator. A well-known example is an 
LRC circuit (Figure 3.3), where the charge q on the capacitor satisfies the equation 

(3.2.6) 

In this case the natural oscillation frequency and the damping rate are determined 
by the fundamental parameters of the circuit: 

and 

_ ( I) 1/2 
wo- LC 

R 
/3 = 2L 

The solution of the differential equation (3.2.6) is 

q(t) = (A cos wQt + B sin wQt) e-f3r 

where 

(3.2.7a) 

{3.2.7b) 

{3.2.8a) 

{3.2.8b) 

Under most conditions of interest the oscillator will be significantly underdamped 
[see Eq. (3.3.10)] and we can replace wQ by w0 • Since (3.2.6) is a second-order 
linear differential equation, its solution has two constants of integration which are 
determined by the initial conditions for q (t) and dq (t) / dt. We have denoted these 
two constants by A and B. 

If the LRC circuit is driven by a sinusoidal emf (Figure 3.4), 

V(t) = V0 cos (wt- 8) (3.2.9) 

,·1 
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70 CLASSICAL THEORY OF ABSORPTION 

Figure 3.4 An LRC circuit with a sinusoidal emf. The charge 
on the capacitor obeys the equation of motion (3.2.10) for a 
sinusoidally driven, damped oscillator. 

.then q satisfies the forced-oscillator equation 

d
2
q dq 2 v, ( ) 

- 2 + 2{J- + w0q = - cos wt - 8 
dt dt L 

(3.2.10) 

where w0 and {J are given by (3.2.7). This is just a scalar version of the electron 
oscillator vector equation (3.2.3), with L corresponding to the electron's mass/ 
·charge ratio 

m 
L=­

e 

and 8 corresponding to the field phase at the position of the atom: 

21rZ 
B=kz=--:;: 

(3.2.11) 

(3.2.12) 

In contrast to the homogeneous solution (3.2.8a), which decays to zero, the 
solution to the forced-oscillator equation (3.2.10) is a steady sinusoidal oscillation 
with an amplitude depending on w and w0• The amplitude has a maximum when 
w ,:::,: w0, and one says that the circuit of Figure 3.4 exhibits a resonance. From 
(3.2. 7a) we see that this resonance condition is met when the capacitance is 

I 
C=­

w2L 
(3.2.13) 

When the resonance condition is approached by tuning the capacitance to the res­
onance value (3.2.13), the amplitude of the oscillating current in the circuit in­
creases dramatically, as shown in Figure 3.5. This resonant enhancement is used 
in simple radio receivers, where a variable capacitor permits tuning to various 
broadcast frequencies. 

The interaction of an atom with a monochromatic field is similarly enhanced 
when 

w = w0 (3.2.14) 
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Figure 3.5 The amplitude of the oscillating current in an LRC circuit with emf (3.2.9). 
The current oscillation is at the driving frequency w, and has maximum amplitude when 
the resonance condition w = w0 = (1/LC)112 is satisfied. 

i.e., when the frequency of the field coincides with a natural oscillation frequency 
of a bound electron. This enhancement of the interaction is already implied by our 
result (2.3.14b) for the refractive index. However, that result is obviously unde­
fined if w = w0• A frictional force in the electron oscillator model allows us to 
understand formulas like (2.3.14b) even for w = w0 , while also providing the 
physical mechanism for the absorption of electromagnetic energy. 

3.3 COMPLEX POLARIZABILITY AND INDEX OF REFRACTION 

The equation (3.2.3) for the electron oscillator with damping is most easily solved 
by first writing it in complex form: 

d~ + 2{) dx + w6x = & !!_Eo e-i(w - k:.) 
dt dt m (3.3.1) 

where we follow the convention of writing E0 cos (wt- kz) as Eo e -l(wt-kz>. 

This means that x(t) in Eq. (3.3.1) is also regarded mathematically as a complex 
quantity in our calculations, but only its real part is physically meaningful. In other 
words, we may defer the process of taking the real part of (3 .3 .1) until after our 
calculations, at which point the real part of our solution for x(t) is the (real) 
electron displacement. This approach is standard in solving linear equations, but 

------- --···--·· 
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there are pitfalls that can arise in nonlinear problems. [See Chapter 17, where 
modifications of Eq. (3.3.1) are used in an introduction to nonlinear optics.] 

We solve (3.3.1) by temporarily writing 

x(t) = a e-i(wt- ~) 

and after inserting this in (3.3.1) we -obtain 

e 
( -w 2 - 2i/3w + w~) a ~ il- E0 m 

Therefore the assumed solution (3.3.2) satisfies Eq. (3.3.1) if 

-il(e/m)Eo 
a~ 

w2 - w~ + 2i(3w 

and the physically relevant solution is therefore 

_ (il(e/m)E0 e-''"''- "'') 
x(t) - Re 2 2 z·o 

Wo-W - lJo.JW 

(3.3.2) 

(3.3.3) 

(3.3.4) 

(3.3.5) 

Note that (3.3.5) actually gives only the steady-state solution of (3.3.1). Any 
solution of the homogeneous version of (3.3.1) can be added to (3.3.5), and the 
total will still be a solution of (3.3.1). The homogeneous version is 

(3.3.6) 

and its general solution is an obvious vectorial extension of (3.2.8a): 

Xhom = [A COS wQt + B sin uJQt] e-f3t (3.3.7) 

where again 

2 2 1/2 wb ~ ( Wo - /3 ) ~ Wo (3.3.8) 

We will usually neglect the homogeneous part of the full solution to (3.3.1). 
This is obviously an approximation. The approximation is however an excellent 

one whenever 

t >> 1//3 (3.3.9) 

Under this condition, e-f3r << 1 and we can safely neglect the homogeneous com-
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ponent (3.3.7) because it makes only a short-lived transient contribution to the 
solution. 

Even though the homogeneous damping time, or lifetime r 0 = 1 I {3, is very 
short, it is not the shortest time in the problem. Typically the oscillation periods 
T = 21r I w_ and To = 27r I wo associated _with the natural oscillation frequency w0 

or the forcmg frequency w are very much shorter. In the case of ordinary optically 
transparent materials such as atomic vapors, glasses, and many crystals and liq­
uids, both w0 and ware typically in the neighborhood of 1015 sec- 1

, and {3 falls in 
a wide range of much smaller frequencies: 

(3.3.10) 

Relations (3.3.9) and (3.3. 10), taken together, imply that times of physical interest 
must be much longer than an optical period: 

(3.3.11) 

That is, steady-state solutions of (3.3.1) are valid for times that are many periods 
of oscillator vibration ( T0 = 2 1r I w0 ) and forced vibration ( T = 2 1r I w) removed 
from r = 0, but they cannot be used to predict the oscillator's response within the 
first few cycles after t = 0. This is, however, a restriction of no real significance 
in optical physics, as it is equivalent to 

t >> 10-15 sec ( ~10-3 ps) (3.3.12) 

This is a time span one or two orders of magnitude smaller than can presently be 
resolved optically. 

The steady-state solution (3.3.5) is very close to the solution (2.3.8) for the 
undamped oscillator. It implies that the electric field induces in an atom a dipole 
moment p = ex, or p = I;1 ex1 in the case of many electrons: 

p=Re t- 2 ° .., ( 

e2 E e -i(wt - fa:) ) 

m w0 - w4 

- 2i{3w 
(3.3.13) 

or 

P = Re (• e
2 

E e -l(w• - "'' f I ) 
0 2 2 2"" m j••d Wj - W - l~>JjW 

The real part can be found explicitly to be 

p = il~ ((w~- w2)E0 cos (wt- kz) + 2/3wE0 sin (wt- kz)) 
m (w~ _ w2)2 + 4132w2 (3.3.14) 

with a corresponding expression for a multielectron system. 
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Because of the frictional damping (i.e., because (3 =F 0) the dipole moment no 
longer oscillates completely in phase with the electric field as it did in (2.3.8). The 
new term proportional to sin ( wt - kz) signifies the existence of a phase lag in the 
dipole response. Thus there is no single real polarizability coefficient that can be 
identified as the ratio of the dipole moment and the electric field strength. 

It is possible nevertheless, and generally very convenient, to introduce a com­
plex polarizability. This is done by recognizing that (3.3.2) can be used to define 
a complex dipole moment p: 

p = ex = ea e-l(wt - fa.) (3.3.15) 

The complex polarizability a is defined by the relation between complex moment 
and complex field: 

p = a(w)tE
0 

e-l(wt- fa.) (3.3.16) 

In the present case, by comparing (3.3.13) and (3.3.16) we easily identify the 
complex polarizability of a Lorentzian atom to be 

e2/m 
"' ( w) = ~---'C.f.""-­

w6 - w2 
- 2i(3w 

e2 w6 - w2 + 2i(3w 
=- 2 

m ( w6 - w2
) + 4!3 2w2 

or in the case of many electrons, 

(3.3.17) 

(3.3.18) 

Given the complex polarizability (3.3.17) or (3.3.18), the complex polarization 
density is 

P = Np = Ncx(w) fE0 e-i(w<- "'' (3.3.19) 

Using this polarization density in the wave equation (2.1.13), together with the 
complex form of the assumed solution (2.3.1), we obtain 

( -e + ::) f Eo e-l(wr- ta.> 

= - w: Na(w) f Eo e-i(wt ·-fa.) 

c <o 
(3.3.20) 
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Therefore k must satisfy the dispersion relation 

(3.3.21) 

just as in Eq. (2.3.13). 
In this case, because a ( w) is complex the refractive index is also a complex 

number: 

"( ) Ne
2
/m<0 

n~ w = 1 + 2 2 w0 - w - 2i(3w 

Ne 2 wE - w2 + 2i(3w = 1 + - --=-"--=-,..:...==­
meo (w6 - wz)2 + 4(32w2 

= [nR(w) + in1 (w)]
2 

(3.3.22) 

The most important consequence of these results is that the electric field in the 
medium behaves differently from the field discussed in Chapter 2 because n(w) is 
now complex: 

E(z, t) = fEo e-l(w< - "'' 

= tEo e-iwir-n<w>zfcJ 

= tEo e-Inr(w)}wz/c e-iw{t-[nR(w)]zjc} (3.3.23) 

Note that E(z, t) is no longer purely oscillatory. Due to n1 (w), the field decays 
with increasing distance of propagation. Since the intensity is proportional to the 
square of the (real) electric field [recall Eq. (2.6.4) and (2.6.8)], the intensity 
shows exponential decay with z: 

(3.3.24) 

where we call a ( w) the absorption coefficient or extinction coefficient: 

a(w) = 2[n1 (w)] w/c 

2Ne 2 /3jw
2 

=-I; , 
Eomc j (wJ - w2 f + 4f3lw2 (3.3.25) 

As in (2.3.23) we have used n =: 1. This is a very important result, and we will 
return to it shortly. 

The phase velocity of the wave (3.3.23) is c fnR(w). The real part of the com-
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Figure 3.6 Anomalous dispersion curve for a collision-broadened absorption line. 

plex refractive index is therefore what would ordinarily be called the "refractive 
index." This refractive index is plotted versus frequency in Figure 3.6. On the 
low-frequency side of each resonance frequency, nR(w) increases with increasing 
frequency, i.e., we have "normal dispersion" (Section 2.4). However, when w 
gets within {31 of w1, nR ( w) begins decreasing with increasing frequency. This 
decrease continues until w is more than {31 from w1 on the high-frequency side, 
whereupon it again increases with increasing frequency. Because most media show 
normal dispersion at optical frequencies, the negative slope of the dispersion curve 
near an absorption line was historically termed anomalous dispersion. 

• Anomalous dispersion was observed by R. W. Wood in 1904. Wood studied the disperw 
sion of light at frequencies near the sodium D lines (5890 and 5896 A). The basic idea of 
Wood's experiment is sketched in Figure 3.7. Light enters a tube in which sodium vapor 
is produced by heating sodium. The vapor pressure decreases upwards in the rube, so that 
for normal dispersion the light would be bent downward, in the direction of greater density 

sodium vapor spectroscope 

0 -:J=:,'C:~w:k~;~==·''':'·····l- o---~ - i)khi~ii~.~ - --- -~ 
sooum ~mes '(t 

Bunsen burner RW. Wood 

Figure 3.7 One ofR. W. Wood's experiments on anomalous dispersion in sodium vapor. 
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and refractive index. The vapor thus acts as a kind of prism. The light emerging at the other 
end of the rube is focused onto the entrance slit of a spectroscope. Wood writes: 

On heating the tube, the sodium prism deviates the rays of different wavewlength 
up or down by different amounts, curving the spectrum into two oppositely directed 
branches. The spectrum on the green side of the D lines will be found to bend down 
in the spectroscope, which means that the rays are deviated upwards in passing through 
the sodium rube, since the spectroscope inverts the image of its slit. This means that 
this phase velocity is greater in the sodium vapor than in vacuo, or the prism acts for 
these rays like an air prism immersed in water. The red and orange region is deviated 
in the opposite direction; these rays are therefore retarded by the vapor. 

In Other words, the refractive index on the Iowwfrequency side of resonance was observed 
to be greater than unity, whereas on the high-frequency side it was less than unity. This is 
the behavior shown in Figure 3.6. In fact Wood's measured curve of refractive index versus 
frequency showed exactly the "anomalous dispersion" form predicted by the electron os­
cillator model. • 

3.4 POLARIZABILITY AND INDEX OF REFRACTION NEAR A 
RESONANCE 

Most of the time we will be primarily interested in the response of the dipoles that 
are very nearly resonant with an applied field. These dipoles will usually be a small 
minority of the dipoles present. The sharpness of their resonant response (recall 
Figure 3.5) makes them particularly important. However, the other dipoles in the 
far off-resonant "background" can be so numerous that they also make a signifi­
cant contribution to the polarizability and index of refraction, and we cannot over­
look them. 

Equation (3 .3 .18) shows that the polari.zability is additive over all dipole re­
sponse frequencies. Thus we can write 

(3.4.1) 

where cxb and cxr are the contributions from "background" and "resonant" di­
poles, respectively. The background dipoles may reside in an actual host material, 
in which the atoms with the resonant dipoles are embedded, or they may be dipoles 
associated with nonresonant oscillations in the same atoms as the resonant dipoles. 
In either event, the relations (3.4.1) and (3.3.21) imply 

(3.4~2) 

where we have indicated a sum over all background species. 
The first two terms in (3.4.2) determine nb(w ), the index of refraction of the 

background or host material. Thus we will write 

---~·~--~·------------------------
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'( ) 2 ( ) N,a,(w) n w = nb w + 
<o 

2 ( N,a,(w)) 
= nb(w) 1 + '( ) 

nb w (;o 

2 ( ) ( N,a,(w)) 
= nb w 1 + ( ) 

'• "' 
(3.4.3) 

where €b = nEeo is the dielectric permittivity of the background. If the resonant 
atoms are present in a monatomic beam, then the background material is vacuum 
or nearly so and the background contributions can largely be ignored. Even in an 
atomic vapor nb can be taken to be unity to three or four significant figures. How­
ever, in laser physics, the background material is frequently a solid or liquid. For 
example, the ruby laser operates because of dipoles associated with chromium ions 
thinly dispersed throughout a solid lattice (the crystal called corundum), and the 
dye molecules of a dye laser are dissolved in a liquid solvent (for example ethanol). 
Then nb is significantly different from unity, typically in the range !.3-2.0. We 
will write nb in place of nb (w) hereafter because the resonances of the background 
are typically in the infrared or ultraviolet and nb is effectively constant at optical 

frequencies. 
The resonant dipoles do not make a correspondingly large contribution,, since 

they are usually present in such small concentrations. The concentration of the 
chromium ions in ruby for example, may be only 1019 per cm

3 
or even less, much 

smaller than typical sdlid densities. As a consequence the last term in (3.4.3) is 
typically much smaller than unity. Then the total index of refraction can be ex­

pressed compactly as follows: 

(3.4.4) . 

where we have again used eb = n;e0 after expanding the square root and keeping 
only the first term in the binomial series (I + x)1

/
2 =I+ x/2 + x

2
/8 + · · ·. 

Now we must consider what we mean by "'near to resonance. •• Note in (3.3.17) 
that when (3 = 0 the imaginary part of a ( w) vanishes and the real part reduces to 
(2.3.10). In any event, if w-is far enough from the resonance frequencies "'J• we 
can put (3 = 0 without affecting the result appreciably. It should be clear then that 
"far from resonance" is only a relative term, relative to the damping coefficient 
(3. For any resonance frequency w1, then, "far from resonance" means 

(3.4:5a) 
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and "near to resonance" means 

(3.4.5b) 

A significant contribution to a ( w) can com~ from a resonance if the associated 
(3 is small enough. Suppes~ there is one frequency w1 = w0 close enough to w to 
satisfy (3.4.5b) and all others satisfy the off-resonance condition (3.4.5a). For 
Clarity we will label the resonant damping coefficient {3 without a subscript. Then 
we can write 

e2 I 
a,(w) = 2 2 2'" m w0 - w - z1-1w 

The resonant part of a ( w) can be written in a still simpler form if w is close 
enough to w0 to justify the approximation 

I "'o - "'I << w, "'o (3.4.6) 

Which is always guaranteed in practice whenever the earlier approximation 
I w0 - w I S (3 is valid. In this case we can write 

w~- w2 = (w0 + w) (w0 - w) = 2w(w0 - w), (3.4.7) 

and under this condition we have 

( ) 
_ e 2/2mw 

!Xr W - • 
w0 -w-i{3 

(3.4.8) 

When the field frequency w is far removed from all the resonance frequencies 
"'J of the medium, the complex polarizability (3.3.17) reduces to the real polariz­
ability (2.3 .I 0). In this case the refractive index predicted by the electron oscillator 
triodel has been discussed in Chapter 2. For frequencies w near to any of theW·, 
however, the friction coefficient {3 becomes important. For example, it is just b~­
cause {3 is not zero that the refractive index does not become infinite whenever w 
= "'J• as is (erroneously) predicted by (2.3.14). 

The real and imaginary parts of the index of refraction can now be identified 
easily, using (3.4.8) for a, ( w ), and we find 

Ne 2 w0 - w 
n8 (w) = nbR + 2 

4n••'omw ( "'o - w) + (3 2 
(3.4.9) 

Ne 2 (3 
n1(w) = nbl + 2 

4nbR'o""" (w0 - w) + (3 2 (3.4.10) 
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Here we have written nbR and nbr for the real and imaginary parts of nb· Also we 
have assumed n,R >> n,1. Finally, by comparison with (3.3.25) and (3.4.10), we 
obtain the absorption coefficient due to the resonance frequencY w0: 

(3.4.11) 

where ab ( w) = 2nb1 w / c is the background absorption coefficient. 

3.5 LORENTZIAN ATOMS AND RADIATION IN CAVITIES 

The Newton-Lorentz equation for the response of an atomic dipole to an applied 
radiation field was given in (3.2.3) under the assumption that the radiation took 
the form of a traveling wave. That is, in complex notation, the electric field was 
assumed to have the form 

E(z, t) = f£0 e-Hw<- "'l (3.5.1) 

This is not appropriate for dipoles in cavities, where the electric field takes the 
form of a standing wave: 

(3.5.2) 

where 

k = k, = mr/L, n = 1, 2, 3, ... (3.5.3) 

as we indicated in Eq. (1.3.2) and derived in Section 2.1. 
In this section we will examine the polarizability of atoms exposed to a stand­

ing-wave field, and the radiation emitted by these atoms into the cavity. The prin­
cipal consequences are a new expression for the relation between k and w and the 

·discovery that a classical laser of Lorentz dipoles can't work. 
In free space [recall (2.3.13)] we specified wand used the coupled Maxwell­

Newton equations to find k = k(w), and this dispersion relation defined the index 
of refraction: n(w) = k(w) c / w, as in (3.3.21). In a cavity, we specify the cavity 
length L which first detennines the wave vector k = k, = mr/L [recall (1.3.2)], 
but not the frequency w. We will use the coupled Maxwell-Newton equations to 
find w = w(k11 ) * w11 • That is, we will find that the presence of dipoles in the 
cavity will bias w, the actual oscillation frequency of the field, away from the 
natural frequency of the cavity mode, w11 = mrc /L. 
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First we rewrite (3.2.3) using (3.5.2) and obtain 

d 2x dx 2 e - + 2R- + w X = f- E sink z e-iwr 
dt2 ~"dt 0 m n n 

(3.5.4) 

The solution of this equation is the obvious analog of (3.3.2): 

(3.5.5) 

where the amplitude a can be found easily by substitution into (3.5.4). It satisfies 
(3.3.3) exactly. In other words the atomic polarizability a( w) remains as derived 
in (3.3.17), even though the atoms are in a standing wave. 

Next we determine the field amplitude. The appropriate Maxwell wave equation 
for a cavity is the same as (2.1.13), except that cavity losses can be included by 
adding an ohmic current J = aE to the right side of (2.1.4). Then we obtain 

(3.5.6) 

Here the second tenn represents the effect of ohmic losses, such as would be due 
to a finite conductivity u (Problem 3.3). This is a common method for modeling 
cavity losses in laser theory. 

The polarization is defined to be P = Nex, as before, so we can use (3.5.5) to 
evaluate the derivatives on the right side of (3.5.6) and use (3.5.2) for computing 
the derivatives on the left side. After differentiating we can cancel the common 
factor tEn sin k11 Z e -lwr on both sides to get: 

-k; + i( wa
2

) + (~)
2 

-(~)
2 

2 
Ne

2
fEom. 

coc c c w0 - wH - 2zl3w 

Now we use kn = w11 / c, and the near-resonance approximation (3.4.7) twice: 

to get 

w5- w2
""" 2w(w0 - w) 

w2
- w~ """2w(w- wn) 

w- w + i~ 
n 2co 

Ne 2 w0 - w + i{3 

- 4tom (w0 - w)2 + {3 2 

=i(o+ig)c 

(3.5.7a) 

(3.5.7b) 

(3.5.8) 

--~·-·--~ 
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where we have defined g and 0 as abbreviations for: 

g= 
Ne2 {3 

--- 2 
2E0mc (w0 - w) + .8 2 

(3.5.9) 

and 

o= 
Ne 2 w0 - w 

- 2Eomc (w0 - w)2 + /3 2 

g(w0 - w) (3.5.10) 
{3 

We note immediately that all reference to the field amplitude has dropped out in 
the step from (3.5.6) to the solution (3.5.8), as it did in the simi!"': step between 
Eqs. (3.3.20) and (3.3.21). What remains is the conSistency c~nd1tion (3.5.8) on 
the parameters of the interaction. That is, (3.5.8) .Is the dispersiOn relation for the 

cavity. · kl 
Let us now solve for g and li. By matching imaginary parts of (3.5.8) we qmc Y 

determine 

g = u/E0c (3.5.11) 

Next we look at the real parts of (3.5.8). With the aid of (3.5.10) we find the 

simple relation 

gc 
w, - w = 

213 
(w - wo) (3.5.12) 

We can interpret this second relation as a condition on the os~illation frequenc_y 
w. Note that if w is below the cavity frequency Wm the left stde of (3:5.1~) IS 

positive and the right side shows that w must the~ lie above the atoiTilC dtpole 
frequency w0 • Conversely, if w is above wm then 1t must ~e below Wo· ~ other 
words no matter whether w0 > wn or wn > w0 , the operating frequency lies be­
tween' the cavity frequency and the dipole frequency. This is. called frequency 
pulling; the interaction with the atomic dipoles pulls. the ele?tnc field frequency 
away from the free-space cavity frequency and toward the dipole frequency. An 

explicit solution of (3.5.12) is 

{3w. + (gc/2)w0 

"' = {3 + gc/2 

gc 
~"' + -(wo-"') n Z{3 n 

(/3 » gc/2) (3.5.13) 
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It is possible to give a physical interpretation to the equation for g as well. If 
we were to allow En in Eq. (3.5.2) to be time-dependent, then upon substitution 
into Maxwell's wave equation (3.5.6) we. would obtain a differential equation for 
En(t) instead of the consistency equation (3.5.11). We would find that En(t) grows 
exponentially in time if g > u I t:0 c. Thus gc is the classical gain coefficient for 
the interaction of radiation with atomic dipoles· in a cavity (Problem 3.4). 

We could go on and formulate immediately a classical theory of laser action .. 
For example, the equality in (3.5.11) gives the value of g = u I t:0c at which am­
plification is first possible. This is the threshold gain, usually denoted g,. Unfor­
tunately, none of this is realistic because (3.5.11) cannot be satisfied. That is, from 
(3.5.9) we see immediately that g is intrinsically negative. Radiation in the cavity 
will only be damped and never amplified by classical dipoles. A classical laser 
theoly based on the linear electron oscillator model is not possible. 

The negative value of g is inherent in the classical theory. It requires a quantum­
mechanical treatment of the light-matter interaction to understand how g can be 
made positive. Apart from this detail, it is remarkable how much of the present 
classical formulation survives the transition to quantum theory. For example, ex­
cept for its sign, the form of the gain coefficient will turn out to be exactly correct. 
The frequency-pulling equation (3.5.12) is exactly correct as it stands. The thresh­
old condition (3.5.11) is correct. We will find how to make g positive in Chapter 
7, and in so doing will find other missing elements of laser theory. such as satu­
ration and power broadening. 

3.6 THE ABSORPTION COEFFICIENT 

We can associate the energy absorbed from an electromagnetic wave by an atom 
with the work done by the wave on the Lorentzian oscillators. In classical me­
chanics the rate at which work is done on an atom when a force F is exerted on it 
is dWAI dt = F · v. In the electron oscillator model the force exerted on an electron 
by the monochromatic field (2.3.1) is simply the Lorentz force appearing on the 
right side of (2.2.18): 

in which case we can write 

F.m = etE0 cos (wr - kz) 

dWA=E·dp 
dr dr 

(3.6.1) 

(3.6.2) 

This expression does not lead to energy absorption by the oscillator if p is in 
phase.with E. In this section we focus attention on an oscillator near to resonance, 
for which rx(w) has a significant imaginary (quadrature) part and for which energy 
absorption does occur. We can use (3.4.8) to obtain 
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:. e
2 1 E ~i(wt - kz) 

p = o:. o e 
2mww0 - w- i{3 

(3.6.3a) 

which corresponds to the (real) physical moment: 

p(t) = te[Ucos (wt- kz)- Vsin (wt- kz)] (3.6.3b) 

The coefficients U and V are easily found by computing the real part of (3.6.3a) 
and comparing with (3.6.3b): 

U= 
eE0 w0 -w 

+ 2 2 
2mw(w0 -w) +/3 

(3.6.4) 

and 

V= 
eE0 /3 

--- 2 
2mw (wo-w) + /3 2 

(3.6.5) 

The corresponding solution obtained without damping would have no qua~tu~e 
component corresponding to V. The existence of the quadrature component IS cnt­
ical to our discussion of absorption, as we now demonstrate. From Eq. (3.6.3b) 

we obtain 

dp 
dt 

-wte[Usin (wt- kz) + Vcos (wt- kz)] 

Therefore the rate at which the dipole energy changes is given by 

(3.6.6) 

dWA = -eE,[wUsin (wt- kz) cos (wt- kz) + wVcos2 (wt- kz)] 
dt 

= ewE0 [ -tUsin (2wt- 2kz)- Vcos' (wt- kz)] (3.6.7) 

Notice that the dipole's energy gain has two distinct contributions. The fi_rst 
term oscillates extremely rapidly and is zero on average, and thus does not giVe 
rise to any permanent change in energy. The second ~enn, however, i~ al":"ays 
positive-definite and corresponds to a steady decrease m field energy w1th ~1me. 
Then the rate of change of electromagnetic field energy, equal and opposite to 
dWA/ dt, is effectively governed by the second tenn alone: 

---------------------------
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dW,m 2( ) -- = ew£0 V cos wt, - kz 
dt 

e' /3 . 2 2 ( ) 
-- 2 E 0 cos wt-kz 

2m(wo-w) +/32 

where we have used the expression (3.6.5) for V. 

(3.6.8) 

Thus we may express the rate (3.6.8) at which electromagnetic energy is ab­
sorbed by an atom in terms of the magnitude of the Poynting vector at the atom 
(recall (2.6.4)]: 

dWem = 

dt 
-~ 13 lsi 

2E0mc(w0 - w)2 + {3 2 
(3.6.9) 

This result is similar to (2.6.5). Both equations show that dWeml dt is proportional 
to I S I· Of course (2.6.5) gives the rate of change of electromagnetic energy in a 
light beam due to scattering, whereas (3.6.9) gives the rate due to absorption. 

The similarity of {3.6.9) to (2.6.5) means that we may define an absorption 
cross section: 

e2 /3 
a(w) = -- 2 

2E0 mc(wo- w) + {3 2 
(3.6.10) 

We may follow the same steps, leading from (2.6.6) to the extinction coefficient 
(2.6.16) due to scattering, to obtain the extinction coefficient due to absorption in 
a medium of N atoms per unit volume: 

Ne2 /3 
a(w) = Na(w) = -- 2 

2E0 mc (w0 - w) + {3 2 
(3.6.11) 

This extinction coefficient is usually called simply the absorption coefficient. The 
intensity of the incident wave after propagating a distance z into the absorbing 
medium is 

I.(z) = I.(O) e-o(w)< (3.6.12) 

just as in the case (2.6.15) when the incident wave is attenuated because of scat­
tering. 

Equation (3.6.12) is identical to (3.3.24). We have simply obtained the same 
physical result for the field attenuation due to absorption using two approaches. In 
the first approach, leading to {3.3.24), absoxption was associated with the imagi­
nery part of the complex refractive index. In this section we have obtained the 
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same result via the rate at which a single atom absorbs energy from the ~eld. The 
two approaches are equivalent. Keep in mind, however •. th~t the abso~tlon coef­
ficient derived here is physically distinct from the extmction co_efficm~t du~ to 
scattering derived in Section 2.6. Both lead to exponential attenuatwn of mtens1ty, 
and the total extinction coefficient includes both. 

The absorption coefficient is often written in terms of the circular frequency v, 

v = w/21r 

rather than the angular frequency w. From (3.6.11), therefore, 

Ne 2 livo 
a(v) =-- 2 2 

47re0 mc (v- v0 ) + Ov 0 

where 

and 

The absorption coefficient (3.6.14) is frequently written in the form 

Ne 2 

a(v) = --L(v) 
4eomc 

where the lineshape function L( v) is defined by 

( ) 
ovo/" 

L v = ., 
(v - vo)" + ov~ 

(3.6.13) 

(3.6.14) 

(3.6.15) 

(3.6.16) 

(3.6.17) 

(3.6.18) 

This is called the Lorentzianfunction, and is plotted in Figure 3.8 .. 
The Lorentzian function is a mathematically idealized lineshape m several re~ 

spects. We have already shown that it is the near-resonance. app.rox.imation to the 
more complicated function (3.3.25). The Lorentzian functJ.on 1~ defi.ne~ mathe~ 
matically for negative frequencies, even though they have no phys1c.al s1gm.fican~e. 
It is exactly normalized to unity when integrated over all frequencies, as 1s easily 

checked: 

~
~ ov0 ~~ dv 

dv L(v) =- .,...----z = 1 
-~ " -~ (v- v0) + ovo 

(3.6.19) 
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Lorentz Jineshope 
S(v) 

v-v0 

8v0 

Figure 3.8 The Lorentzian lineshape function. 

and the normalization is approximately the same when only the physical, positive 
frequencies are used. The approximation is excellent for Ov0 << v0 [recall 
(3.3.10)]. In other words, the contribution of the unphysical negative frequencies 
is negligible because the linewidth is negligible compared with the resonance fre­
quency, and in this sense L ( v) is physically as well as mathematically normalized 
to unity. 

The maximum value of L ( v) occurs at the resonance v = v0: 

At v = v0 ± Ov0 we have 

1 
L(v) = L(v0 ) =-= 1rOv0 

1 1 
L(v0 ± ov0 ) = -- =- L(v) 

21rOv0 2 nmx 

(3.6.20) 

(3.6.21) 

Because of this property, 20v0 is called the width ·of the Lorentzian function or the 
full width at half maximum (FWHM), and ov0 is called the half width at halfmax­
lmum (HWHM). The Lorentzian function is fully specified by its width (FWHM 
or HWHM:) and the frequency v0 where it peaks. The absorption coefficient is 
greatest at resonance, where 

(3.6.22) 
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and decreases to half this resonance value when the field is "'detuned" from res­
onance by the half width Ov0 of the Lorentzian function. 

Our classical theory thus predicts that the absorption is strongest when the fre­
quency of the light equals one of the natural oscillation frequencies of the bound 
electrons. Far out in the wings of the Lorentzian, where \ v - v0 \ >> Ov0 , there 
is very little absorption. A knowledge of the width Ov0 is therefore essential to a 
quantitative interpretation of absorption data. In order to determine the numerical 
magnitude of Ov0 in a given situation, we must consider in some detail the physical 
origin of this absorption width. This we do in Section 3.9. 

We shall see laterthata(v) does not always have the Lorentzian fonn (3.6.17). 
However, it will always be possible to write the absorption coefficient as 

a(v) = a,S(v) (3.6.23) 

where the lineshape function S(v), whatever its form, is normalized to unity: 

(3.6.24) 

With this normalization it follows that 

r dva(v) =a, r dvS(v) =a, (3.6.25) 

The integrated absorption coefficient a1 is convenient b(-!Cause it is independent of 
the lineshape function S ( v ), which may vary with parameters like pressure, tem­
perature, etc. It thus provides a measure of the inherent absorbing strength of the 
atoms. 

3.7 OSCILLATOR STRENGTH 

Even more than the integrated absorption coefficient, the integrated absorption 
cross section, namely 

U1 = ar/N (3.7.1) 

is a convenient measure of absorption, because it characterizes the inherent ab­
sorbing strength of a single atom. From (3.6.23) and (3.6.17) we see that 

Ne 2 

ar=--
4e0mc 

(3.7.2) 

and therefore 

e' 
Ur = --

4-tomc 
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(3.7.3) 

The numerical value of u1 is easily computed to be approximately 2.65 X 10-2 

crn2-sec -I. This is a universal value, and according to our theory is applicable to 
absorption by any atomic material. 

Extensive experimental absorption data exist for atomic hydrogen. For exam­
ple, it is known to absorb strongly at a wavelength of about 1216 A, with an 
integrated absorption coefficient of about 1.1 X 10-2 cm2-sec- 1• Thus our clas­
sical1electron oscillator theory gives a reasonable order of magnitude, although it 
is far from being quantitatively accurate. However, atoms do not absorb at only 
one wavelength. Table 3.1lists some wavelengths at which atomic hydrogen ab­
sorbs radiation. Our classical theory gives an integrated absorption cross section 
(3.7.3) which is independent of v0 , so that the same numerical value (2.65 X 10-2 

cm2-sec- 1
) should apply to every wavelength listed in Table 3.1. The second col­

umn of Table 3.1 lists the observed integrated cross sections of these absorption 
lines, while the third column gives the ratio of the observed value for each line to 
the result (3.7.3) of the classical theory. We see that the classical result comes 
close to the integrated absorption cross section only for the 1216-A line. 

Before the advent of the quantum theory, this quantitative failure of the classical 
theory was sidestepped by writing the integrated absorption cross section of a one­
electron atom as 

e' 
u, = --t 

4E0mc 
(3.7.4) 

where the parameter f is called the "oscillator strength," and its values are given 
by the third column of Table 3.1. In other words. the classical theory was patched 
up by assigning a different ''oscillator strength'' to each natural oscillation fre-

TABLE 3.1 Some Integrated Cross Sections of Atomic Hydrogen 

Wavelength 
rAJ 

1216 
1026 
973 
950 
938 
931 

(J1 (actual) 
(crn2-sec-t) 

1.10 x w-z 
2.10 x w- 3 

7.69 x w-' 
3.71 x w-4 

2.01 x w-4 

1.21 x w-4 

f = a, (actual) 
a1 (classical themy) 

0.416 
0.079 
0.029 
0.014 
0.0078 
0.0048 

I ~ 
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quency. In fact the integrated absorption cross section for any atom could be writ­
ten in the form (3.7.4) by making the ad hoc replacement 

(3.7.5) 

wherever the quantity on the left appeared. In this way the Lorentz theory (of both 
absorption and the refractive index) was brought into detailed numerical agreement 
with experimental results. We will include fin most classical fommlas hereafter. 
Like the natural oscillation frequencies, however, the oscillator strengths had to 
be taken as empirical parameters, without a theoretical basis. Quantum theory re­
moves both of these defects of Lorentz's model. 

3.8 ABSORPTION OF BROADBAND LIGHT 

The rate at which the energy WA of an atom increases due to absorption of elec­
tromagnetic energy may be obtained from (3.6.2) or (3.6.9): 

dWA = -dW,m = 1re
2J fJ /" 1 

dt tit 2e0 mc ( w - w0 )
2 + (3 2 

= "e'J (..l.s(P))J, 
2e0 mc 21!' 

(3.8.1) 

where we have added the subscript v to remind us that I, refers to the intensity of 
monochromatic radiation at the frequency v. 

Equation (3.8.1) gives the rate of increase of the energy of an atom due to 
absorption from a monochromatic field of frequency v. In reality, of course, the 
applied field will not be perfectly monochromatic. Hereafter we will indicate ex­
plicitly the dependence of field quantities on the frequency: W em --~- w;m and I -~­
I". The change in atomic energy is due to the action of all the frequency compo­
nents: 

(dWA) _ L: ( -aw;m) 
dt total - " dt 

(3.8.2) 

In many cases of interest the field is composed of a continuous range of frequen­
cies, and the summation in (3.8.2) must be replaced by an integral: 

--------- ------
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(dW) '! l~ 
d

A ~-e- S(P)l(P)dP 
t total 4eomc o 

(3.8.3) 

where I ( v) dv is the intensity of radiation in the frequency band from v to v + dv. 
It is convenient to define a spectral energy density p ( v ), such that p ( v) dv is 

the electromagnetic energy per unit volume in the same frequency band (Figure 
3.9). The total electromagnetic energy per unit volume is then 

l
~ 1 ]~ 

p(P)dp=- f(P)dv 
0 c 0 

(3.8.4) 

dearly (3.8.3) may be rewritten 

(dWA) e2
j l~ - =- S(P) p(P) dP 

dt total 4€0 m o 
(3.8.5) 

We can now define ''broadband" light as follows. Whenever the spectral en­
ergy density p ( v) is a flat, almost constant function of v compared with the atomic 
lineshape function S ( v), we can write 

r dP S(v) p(P) ~ p(Po) r dP S(v) 

= p(vo) (3.8.6) 

If p ( P) is perfectly constant, then of course (3.8.6) is an equality. Whether p ( P) 
is fiat enough in its variation to justify the approximation (3.8.6) depends on the 
lineshape function S ( v). The narrower the width of S ( v ), the easier it is to satisfy 
(3.8.6). When this approximation is valid we may say that we have broadband 
light and broadband absorption, as opposed to the opposite extreme of narrow­
band (i.e., monochromatic) absorption. Both extremes are limiting cases of (3.8.5). 

Figure 3.9 The spectral energy densitY p( v) is defined so that u( v) = p( v) Liv is the 
electromagnetic energy per unit volume in the narrow frequency interval from v to v + llv. 
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Therefore, the energy absorption rate for an atom exposed to broadband radiation 
is 

(3.8.7) 

We see that for broadband absorption the rate at which the energy of the atom 
increases is completely independent of the fonn of the lineshape function S(v), 
and is simply proportional to the spectral energy density of the field at the dipole's 
natural oscillation frequency v0 • 

In Table 3.2 we collect the most important results of this section. For simplicity 
we omit the background .refractive index from the equations. This is always an 
excellent approximation for gaseous media, where nb is close to unity. However, 
for solid media the index must be included. We return to this point in our discus-

TABLE 3.2 Results of the Classical Theory of Absorption by a 
Medium with N Atoms per Unit Volume. 

Energy Absorption Rate of an Atom 

dWA e~ loo 
-d ~ :;-:---- dv S(v) p(v) (f ~oscillator strength) 

t '1t0m o 

<'! = -p(vo) 
4<om 

(narrowband radiation) 

(broadband radiation) 

Lineshape Function 

S( P) peaks at the resonance frequency v = v0 and 

r dvS(v) ~ 1 

Attenuation of Intensity for Radiation of Frequency P 

l,(z) ~ l,(O) ,-"'''' 

Ne'J a(v) ~ -- S(v) 
4<omc 

(absorption coefficient) 

(integrated absorption coefficient) 

The oscillator strengthfhas been included by making the replacement (3.7.5), 
i' /m- e'f jm. 
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sion of laser gain in Chapter 10. We have furthermore refrained from specifying 
the form of the lineshape function S(v); the question of different lineshapes is 
taken up in the following sections. The equations of Table 3.2 are valid for any 
lineshape function. 

3.9 COLLISIONS AND "FRICTION" IN THE LORENTZ MODEL 

In the preceding sections of this chapter we have shown that light is strongly ab­
sorbed when it is nearly resonant with one of the natural oscillation frequencies of 
the molecules of a medium, and that absorption is due to ''frictional'' processes 
that. damp out dipole osCillations. We have also shown that any frictional force in 
the Newton equation of an electron oscillator leads to a broadened absorption line, 
the lineshape being Lorentzian. We did not, however, give any fundamental ex­
planation for the existence of frictional processes. We will now approach the ques­
tion of absorption and lineshape from a more fundamental viewpoint, focusing our 
attention on ""line broadening'' mechanisms in gases, in order to answer the ques­
tion of the origin of the frictional coefficient (3. 

It is a well-known result of experiment that, for sufficiently large pressures, the 
width of an absorption line in a gas increases as the pressure increases. This 
broadening is due to collisions of the molecules and is therefore called collision 
broadening, or sometimes pressure broadening. Collision broadening is the most 
important line-broadening mechanism in gases at atmospheric pressures, and is 
often dominant at much lower pressures as well. We will begin our study by con­
sidering the details of collision broadening. 

Our treatment of collision bro~dening will follow the original approach of Lor­
entz. We will find, for instance, that a kind of frictional force arises naturally as 
a result of collisions, and that the damping rate /3 can be interpreted as simply the 
collision rate. 

Let us consider the effect of collisions on an atom in the electric field of a laser 
beam. We imagine collisions to occur in billiard-ball fashion, each collision lasting 
for a time that is vecy short compared with the time between collisions. We sup­
pose that, immediately prior to a collision, the active electrons in an atom are 
oscillating along the axis defined by the field polarization, as indicated by (3.3. 13). 
During a collision, the interaction between the two atoms causes a reorientation 
of the axes of oscillation. Since each atom in a gas may be bombarded by other 
atoms from any direction, we can assume that on the average all orientations of 
the displacements and velocities of the atomic electrons are equally probable fol­
lowing a collision. This is the assumption made by Lorentz. It is an assumption 
about the statistics of a large number of collisions, rather than about the details of 
a single collision. 

Consider a gas of atoms at a given time t. Most atoms are not at this moment 
involved in a collision. Consider in particular those atoms that underwent their 
most recent collision at the earlier time t 1• According to our (Lorentz's) assump-
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tion, the average of the electron displacements and velocities for these atoms van­
ished at the time t11 since all orientations of displacement and velocity vectors 
were equally probable immediately after their collision. We assume that the elec­
trons in those atoms that had their last collision at time t 1 obey the Newton-Lorentz 
equation (2.3.7), which we write here in complex notation: 

(3.9.1) 

The electron displacement for a dipole satisfying this equation is obtained by com­
bining the homogeneous and particular solutions in such a way that x ( t) obeys the 
initial conditions 

(3.9.2) 

Note that these are initial conditions applying to the "average" atom, since we 
have assumed that all displacements and velocities are equally likely after a col­
lision. The corresponding solution to (3.9.1) will be written 

x(t; t1) = t e;o/m 2 [e-;""1 -.!. (1 + ~) e-'""o(t-tl) e-1""11 
w0 - w 2 w0 

- ~ ( 1 - :
0

) ei"'o(t-tl)e-i""rl] ella. (3.9.3) 

It is easy to verify that (3.9.3) is the desired solution, by checking that it satisfies 
both (3.9.1) and the initial conditions (3.9.2). This solution will now be taken to 
represent the average atom. It bas this average significance even if it is not appli­
cable to any one of the atoms individually. 

We wish to calculate the average electron displacement at time t for atoms in 
the gas, no matter when their last collision. We can obtain this by summing (3.9.3) 
over all possible t1• We only need to know (at timet) the fraction df(t, t1) of 
atoms for which the last collision occurred between t1 and t1 + dt1• We show 
below that this is given by 

(3.9.4) 

where T is the mean time between collisions. The average electron displacement 
( x(t)) for any atom at timet is therefore obtained by multiplying (3.9.3) by the 

--·----· ---
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fraction (3.9.4) of atoms to which it applies, and then summing (integrating) over 
all possible values of earlier times t 1 : 

The required integrals are 

The average electron displacement is therefore given by 

{ x(t)) = f eE,/m e-Hw<- k<) 

w~- w2 

[ 1 i 1 +w / w0 i _.:_1_-.:::"':.!./.:::"':!!'c...] 
X +- --

2T w0-w-i/r 2r w0+w+i/r 

and the corresponding polarizability is 

cx(w)= e'/m 
w~- w2

- 2iw/T + 1/r2
• 

(3.9.5) 

(3.9.6a) 

(3.9.6b) 

(3.9.6c) 

(3.9.7) 

(3.9.8) 

Note that, except for the term l/r2
, this is the same as (3.3.17) if we identify the 

frictional coefficient i3 with the collision rate 1 / T. 

---·-------

'-
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The main conclusion to be drawn from our collision analysis is obvious. Given 

the strong inequality 

WT >> 1 (3.9.9) 

which implies that the mean time between collisions is much longer than an optical 
period ( -10-15 sec), and which is an excellent approximation in practice, the last 
term in the denominator of (3.9.8) can be dropped. Then the effect of collisions is 
exactly the same as the effect of a frictional damping force if we let 

R I 11" . t..J = - = CO lSlOTI rate (3.9.10) 
r 

However, we must not lose sight of the statistical nature of our treatment of col­
lisions. We should really say that a frictional term in the Newton equation is jus­
tified by the effects of collisions on the average. Thus we can give up the artificial 
notion of friction at the atomic level, but still use all of the results derived from 
it, if we reinterpret x(t), U, V, and WAin Sections 3.5 and 3.6 as average values 
in the sense of (3.9.5). We are thus led to regard the results of Table 3.2 with the 
Lorentzian lineshape function (3.6.18) as the consequences of collision broaden­
ing. The width (HWHM) of this collision-broadened lineshape function is 

{3 I 
Ov0 =-=-

27r 27rT 
(3.9.11) 

The damping term we introduced empirically earlier in (3.2.3) may now be inter­
preted as the damping of the average electron displacement, i.e., 

d 2 d e ---;: (X) + 2{3- (X) + w5 (X) = t -·Eo e-i(w<- "'' (3.9.12) 
dt dt m 

Collision broadening is often described equivalently in terms of a ''dephasing'' 
of the electron oscillators, as follows. Immediately after a collision the phase of 
the electron's oscillation has no correlation with the precollision phase. Collisions 
have the effect of "interrupting" the phase of oscillation, leading to an overall 
decay of the average electron displacement from equilibrium (Figure 3.10). The 
damping rate in (3.9.12) is sometimes called a "dephasing" rate, in order to dis­
tinguish it from an "energy decay" rate. The latter would appear as a frictional 
term in the equation of motion of each electron oscillator as well as in the average 
equation. In the absence of any inelastic collisions to decrease the energy of the 
electron oscillators, each oscillator would satisfy the Newton equation (2.3. 7) with 
no damping term. Due to elastic collisions, i.e., collisions which only interrupt 
the phase of oscillation but do not produce any change in energy, the average 
electron displacement follows equation (3.9.12), which includes damping. 
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VV MN JWV\JNV\f' atom 1 

' ' ' t collision collision collision 

atom 2 

Mrvvvf"Mf\WN" atom 3 

' t ' ' t 
Figure 3.10 Electron oscillations in three different atoms in a gas. Collisions completely 
interrupt the phase of the oscillation. The average electron displacement associated with all 
the atoms in the gas therefore decays to zero at a rate given by the inverse of the mean 
collision time. 

• To complete our derivation of (3.9.7), we must prove our assertion (3.9.4). The mean 
time between collisions, 7, is obviously an average; a given atom certainly docs not have 
collisions in evenly spaced intervals of time .,. . We can only say that the probability of any 
given atom having a Collision in a small time interval A.t is given by A.t times the mean 
number of collisions per unit time, 1 I 1'. If at time Tthere are 1J (T) atoms which have not 
yet had a collision since the timeT= 0. then the number of "collisionless" atoms at time 
T+ .6.Tis 

(3.9.13) 

In words, 1J ( T) decreases by the amount 1J ( T) .6. T I 7, which is the number of atoms col­
lisionless since the time T = 0, times the probability that any one such atom will have a 
collision in the time interval .6. T. Thus 

The limit A. T -+ 0 gives the simple differential equation 

with the solution 

Since "f/o is the total number of atoms in the gas, the quantity 

P(T) ~ e-r;, 

(3.9.14) 

(3.9.15) 

(3.9.16) 

(3.9.17) 
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is the probability that a ·given atom has had no collision for a time T. At T = 0, when we 
begin "looking," this probability is unity. For T >> T it is very small, because in all 
likelihood the atom will have a collision before many collision times T have elapsed. 

The probability that a given atom will have no collision for a time T, and then have a 
collision within a time interval dT, is just the: product of the probabilities for these two 
"events .. , i.e., P(T) dT jT. This is just the fraction df(T), of the total number of atoms, 
that can be expected to have their next collision within the time interval from T to T + dT, 
after we begin "looking" at T = 0. If we imagine a movie showing the movements and 
collisions of the atoms, we can run our film backwards in time and the collisions will exhibit 
the same statistical behavior. And we will observe the same statistical behavior regardless 
of where we begin looking. 

The atoms at timet that had their last collisions in the interval from t 1 to !1 + dt1 will 
be just those having their next collision in the same interval when we look at the gas back­
wards in time beginning at time t. Thus the fraction df(t, t 1) of atoms at time t that had 
their last collision in an interval dt1 of t 1 < twill be the same as the fraction of atoms at 
time t which will have their next collision in an interval dt1 of t 1 when the film is run 
backwards. This is just the probability P( T) dt1 / T found above, with T = t - t 1• Thus 

(3.9.18) 

which is the same as (3.9.4). • 

3.10 COLLISION CROSS SECTIONS 

We have shown in the preceding section that collisions, on average, can produce 
the same effect as frictional damping on an electron oscillator. The damping rate 
{3 can be identified with the collision rate 1 I r. Therefore the magnitude of 1 I r is 
of direct significance for realistic estimates of line broadening. 

The collision rate 1 I r may be expressed in terms of the number density N of 
atoms, the collision cross section u between atoms, and the average relative ve­
locity V of the atoms. Imagine some particular atoin to be at rest and bombarded 
by a stream of identical atoms of velocity V. If the number of atoms per unit 
volume in the stream is N, then the number of collisions per unit time undergone 
by the atom at rest is NqlJ, where the area q is the collision cross section between 
the atom at rest and an atom in the stream. The number of collisions per second 
is the same as if all the stream atoms within a cross-sectional area cr collide with 
the stationary atom. The idea here is exactly the same one used to define scattering 
and absorption cross sections for incident light. 

According to the kinetic theory of gases, an atom of mass mx has an rms velocity 

(3.10.1) 

in a gas in thermal equilibrium at temperature T. where k is Boltzmann's constant. 
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To obtain the average relative velocity Vre1 .of colliding atoms of masses m d 
"th 1 · xan~ny m e gas, we rep ace mx m (3.10.1) by the reduced mass 

( 
1 1 )-' -+-

m, m, (3.10.2) 

Thus 

(3.10.3) 

It is convenient to express this in terms of the atomic (or molecular) weights M 
~~: < 

__ [SRT( 1 1 )]'
1
' 

Vn:t- - +-
1r Mx My 

(3.10.4) 

where R. the uni~:rsal gas constant, is Boltzmann's constant times Avogadro's 
number. The colltston rate for molecules of type x is therefore 

1 
- ~ l: N(Y)u(X. Y) v.,(X. Y) 
T y 

(3.10.5) 

where ~e sum is over all species y, including x. 
~e Important "unknowns" in the expression (3.10.5) are the collision cross 

secti~ns a(X, Y) .. rt often ~ppens that these are not known very accurately. They 
are difl!cult to denv~ theoretically, and experimental determinations are not always 
unamb~guo~. The sunplest approximation to the cross section is the "hard-sphere .. 
approxunation. We write 

(3.10.6) 

where d and d are the • 'ha d h • • 1 u1 · x y r -sp ere mo ec ar diameters estimates of wh 'ch 
are sometimes tab 1 d -(X Y) · · ' 

1 

. u ate · (J • ts JUSt the area of a circle of diameter d + d 
~ust what we would expect if the molecules acted like spheres of diameter: d ar{'d 
(y· For C02, for example, the hard-sphere diameter is about 4.00 A. From 
~010.6), therefore, the hard-sphere cross section for two C02 molecules is Cl(CO 

2) = 5.03 X w-ts cm2
• For a gas of pure C02 at T = 300 K we find~; 

,, 
!, 
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averacre relative velocity of two colliding C02 molecul,~s to be tire\ = 5.37 X 10
4 

cm/s~c. The collision rate (3.10.5) in the "hard~sphere" approximation is there­

fore 

~ ~ N(5.03 x 10-15 cm2 ) (5.37 x 104 em/sec) 
T 

~ 2.70 X 10-10N /sec (3.10.7) 

where N is the number of C02 molecules in a cubic centimeter. For an ideal gas 
we calculate (Problem 3.5) 

P(Torr) 
N ~ 9.65 X 1018 --T- (3.10.8) 

where P(Torr) is the pressure in Torr ( 1 atmosphere ~ 760 Torr) and Tis the 
temperature (K). From (3. 10.7), finally, the collision rate for a gas of CO, at 300 

K is 

~ ~ 8.69 X 106P(Torr) sec"1 

T 

(3.10.9) 

Thus at a pressure of 1 atmosphere (760 Torr) we calculate the collision rate 

~ ~ 6.60 X 109 sec-' 
T 

and fmm (3.9.11) the collision-broadened linewidth 

ov0 = 1.05 X 109 Hz 

(3.10.10) 

(3.10.11) 

The actual collision-broadened linewidths can be larger, by as much as an order 
of magnitude or more, than those calculated in the hard~sphere approximation. The 
value calculated above, however, is reasonable, and it allows us to point out some 
general features of the collision-broadened linewidths. First we note that the col­
lision rate (3 .1 0.1 0) is very much smaller than an optical frequency, as assumed 
in (3.9.9). The linewidth Ov0 is thus also orders of magnitude less than an optical 
frequency. This explains why we can speak of absorpti~n "lines" in a gas, e_ven 
though the absorption occurs over a band of frequencies: the band has a w1dth 
( -20v0 ) that is very small compared with the resonance frequency vo. 
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From (3.10.9) we note that the linewidth is linearly proportional to the pressure. 
For this reason, experimental results for collision-broadened linewidths are often 
reported in units such as MHz-Torr- 1

• The linewidth calculated above, for in­
stance, may be expressed as 1.38 MHz-Torr- 1

. at 300 K. 
Our treatment of collision broadening onlY highlights some general features of 

a complex subject. In actual calculations we prefer always to use measured values 
of the collision-broadened linewidths. We note parenthetically that, for the 10.6-
p.m C02 laser line, the linewidth ( 1.38 MHz-Torr -t) computed above is about 
three times smaller than the experimentally detennined value. It is possible to 
calculate these widths more accurately, but this will not concern us. 

3.11 DOPPLER BROADENING 

The Doppler effect was demonstrated for sound waves in 1845 by C. H. D. Buys 
Ballot, who employed trumpeters performing in a moving train to demonstrate it. 
The mathematician C. J. Doppler had predicted the effect in 1842. His prediction 
applied also to light, although Maxwell's electromagnetic theory of light waves 
was still nearly a quarter of a century away. 

Let us consider again a gaseous medium, this time only very weakly influenced 
by collisions (i.e., (3 is very small). Every electron oscillator will thus undergo 
practically undamped oscillation at the field frequency. Nevertheless we will show 
that, because of the Doppler effect, an absorption line is broadened and its width 
can be much larger than fJ. We will find that the lineshape associated with the 
Doppler effect is not the Lorentzian function (3.6. 18), but rather the Gaussian 
function given in (3.11.6) below. 

To an atom moving with velocity v << c away from a source of radiation of 
frequency v, the frequency of the radiation appears to be shifted: 

(3.11.1) 

This is the Doppler effect. It implies that a source of radiation (e.g., a laser) exactly 
resonant in frequency with an absorption line of a stationary atom will not be in 
resonance with the same absorption line in a moving atom, and the frequency offset 
is Ov = (v /c) v. Similarly, a nonresonant absorption line ofafl atom may be brought 
into resonance with the field as a result of atomic motion. Since the atoms in a gas 
exhibit a wide variety of velocities, a broad range of different effective resonance 
frequencies will be associated with a given absorption line. In other words, the 
absorption line is broadened because of the Doppler effect. The absorption line is 
thus said to be Doppler-broadened. 

For a gas in thermal equilibrium at the temperature T, the fraction df(v) of 
atoms having velocities between v and v + dv along any one axis is given by the 
(one-dimensional) Maxwell-Boltzmann distribution, 
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d'f( ) ( "'x )1/2 e-m~tfl/2kT dv 
v = 21rkT (3.11.2) 

Here again k is the Boltzmann constant and mx is the mass of an atom or molecule. 
Because we have assumed that collisions are almost negligible, an atom with res­
onance frequency v0 and v·elocity v moving away from the source of radiation will 
only absorb radiation very near to (within tlv = (3/27r of) the frequency 

(3.11.3) 

The fraction of atoms absorbing within the frequency interval from v to v + dv is 
thus equal to the fraction of atoms with velocity in the interval from v to v + dv. 
From (3.11.3) we have 

c 
v =- (v- vo) 

Vo 
(3.11.4) 

and dv = (cjv0 ) dv. Using (3.11.2) we can detennlne that this fraction is 

(3.11.5) 

Since the absorption rate at frequency v must be proportional to dJ:,(v), we may 
write the Doppler lineshape function as 

S(v) = ( m,C' )1/2 e-m,c'-(•-•ol'/2kT"o 
Z1rkTvi, 

(3.11.6) 

Since (3.11.2) was normalized to unity when integrated over velocity, (3.11.6) is 
normalized to unity with respect to the frequency offset (or "'detuning'') v - vo, 
as required by the definition of lineshape function. 

By direct computation using (3.11.6) we find 

too dv S(v) = S(v0) I: dv e-mxc2(~-~o)'l.jZkT~5 

= S(vo) ~~ a,.. e-m,c'-,'J2KF'i, 
J -~o 

;:::::: S(vo) roo dp. e-m,clp.2j2k.T~~ 
L 
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~ 1 (3.11.7) 

We have used the excellent approximation kT << mxc2 to replace the lower limit 
of the integral by - oo. Thus we may write 

ri is convenient to define 

in tenns of which 

(
2kT )112 

Ov0 = 2~ -ln2 
c mx 

(3.11.8) 

(3.11.9) 

(3.11.10) 

~d we recognize that Ovo is the width (FWHM) of the Doppler absorption curve, 
smce 

(3.11.11) 

Svo is commonly called the Doppler width (Figure 3.11). The Doppler width is 
also often defined in terms of the 1/ e point of the curve, rather than the half~ 
maximum point. Sometimes it is defined as the half width at half maximum 
(HWHM) rather than the FWHM. Thus one finds formulas in the literature differ­
ing by factors of 2, ln 2, etc. It is important to keep these possible differences in 
mind when comparing calculations. 

The peak of the Doppler curve at v = v0 has the value 

1 (41n2)I/Z S(v0 ) =- --
Ov0 1r 

where S ( v0 ) is evidently the peak value of S ( v), for which v 
detennined from the normalization condition (3 .11. 7). 

(3.11.12) 

v0 • S(v0 ) is 
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Doppler lineshape 
S(v) 

0 ~~-2~--~-L,----~o-----£~--J2~ 

V-'t) 

8v0 

Figure 3.11 The Doppler lineshape function. 

In terms of the molecular weight Mx and the wavelength Ao 
absorption line, the Doppler width is 

2 (2RT )1
/

2 

OPn = Ao Mx ln 2 

c/v0 of the 

(3.11.13) 

where Ao is expressed in angstroms, Mx in grams, and Tin kelvins. In these same 
units the formula 

o ( T)l/2 ..l:f2 = 7.16 X 10-7 
-

Vo Mx 
(3.11.14) 

for the ratio of the Doppler width to the resonance frequency is also useful. 
The Doppler width depends only on the transition frequency, the gas tempera­

ture, and the molecular weight of the absorbing sp("..cies. It is therefore much sim­
pler to calculate than the collision-broadened width, which involves the collision 
cross section. As an example, consider the 6328-.A line ofNe in the He-Ne laser. 
Since MN, = 20.18 g for Ne. we obtain from (3.11.13) the Doppler width 
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/jpD = 1500 MHz (3.11.15) 

forT == 400 K. For the 10.6-.um line of C02 and the same temperature, however, 
we find a much smaller Doppler width: 

ovn = 61 MHz (3.1!.16) 

3.12 THE VOIGT PROFILE 

D. oppler broadening is an example of what is called inhomogeneous broadening. 
The tenn inhomogeneous means that individual atoms within a collection of oth­
erwise identical atoms do not have the same resonant response frequencies. Thus 
atoms in the collection can show resonant response over the available range of 
frequencies. This is true even though the atoms are nominally identical. In the 
Doppler case this is because individual (nominally identical) atoms can have dif­
ferent velocities. These different velocities serve as tags or labels for the individual 
atoms, and any discussion of the behavior of a sample of such atoms must take 
account of all the velocity labels. 

There are other possible inhomogeneities that have the same effect as the 
Doppler distribution of velocities. For example, impurity atoms embedded ran­
domly in a crystal are subjected to different local crystal fields due to strains and 
defects. These have the effect of shifting the resonance frequency of each atom 
slightly differently. The distribution of such shifts acts very much like the Doppler 
distn'bution, and gives rise to an inhomogeneous broadening of the absorption line 
associated with the nominally identical impurity atoms subjected to different local 
fields in the crystal. This type of random strain broadening is present in the Cr3 + 

line associated with ruby laser light, for example. 
The line broadening associated with collisions is different, and is called ho­

mogeneous. This is because each atom can itself absorb light over a range of fre­
quencies, due to the interruptions of its dipole oscillations by collisions. Since the 
collisional history of every atom is assumed to be the same, no greater collisional 
broadening is associated with the collection of atoms than is associated with an 
individual atom. 

In general we cannot characterize an absorption lineshape pf a gas as a pure 
collision-broadened Lorentzian or a pure Doppler-broadened Gaussian. Both phase­
interrupting collisions and the Doppler effect may play a role in determining the 
lineshape. We will now derive the Voigt profile, describing the absorption line­
shape when both collision broadening and Doppler broadening must be taken into 
account. 

Equation (3.6.18) gives the collision-broadened lineshape for each atom in the 
gas. If an atom has a velocity component v moving away from the source of light 
of frequency v ,;::; v0 , its absorption curve is Doppler-shifted to 
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~ 2 
(vo- v + vvjc) + ov% 

(1/or)<lv0 (3.12.1) S(v, v) 

In other words, the peak absorption for this atom will occur at the field frequency 

v such that (3.11.3) is satisfied: 

VoV 
v ~ v +-

0 c 
(3.12.2) 

The lineshape function for the gas is thus obtained by integrating over the velocity 

distribution (3.11.2): 

roo ( M )'/
2 

S(v) ~ Loo dv S'(v, v)l 2,~T e-M·•'/2RT 

1 b2 roo dy e-y' 

~ ,'12 OVo Loo (y + x) 2 + b2 

where we have made the change of variables (Problem 3.6) 

and we have defined 

x ~ (4ln2)'/2Vo- v 
ov0 

(3.12.3) 

(3.12.4) 

(3.12.5) 

The lineshape function (3.12.3) is called the Voigt profile. 
In the case when the applied field is tuned exactly to the resonance frequency 

v0, we have x = 0 and therefore 

(3.12.6) 

3.12 THE VOIGT PROFILE 

The integral may be looked up in a table of integrals. It is found that 

107 

dye 7r bz )
~ -y' 

-ooy' + b2 ~be erfc (b) (3.12.7) 

(3.12.8) 

ihe complementary error jUnction. From (3.12.6) and (3.12.7), therefore, the 
lineshape function for the resonance frequency v = v0 has the value 

b b' ~ -,1-2 - e erfc (b) 
7r Ovo 

(
4 In 2)'/

2 
I 

~ -,- ova e" erfc (b) (3.12.9) 

This function is plotted for several values of the parameter bin Figure 3.12. 
S ( depends strongly on the ratio of the linewidths for collision and Doppler 

When the collision width Ov0 is much greater than the Doppler width 
we have b >> 1. For large values of bit is lmown that 

1.0 

08 

0.6 

O!f 

02 

0 0.5 1.0 1.5 2.0 2.5 
b-

Figure 3.12 The function e"~erfc (b). 
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,, ( ) 1 
eerfcb""'~ 

" b 
(b » 1) (3.12.10) 

1n this .. collision-broadened limit," therefore, we have from (3.12.9) the result 

(b » 1) (3.12.11) 

which is exactly the result (3.6.20) for the case of pure collision broadening. In 
the limit in which the Doppler width is much greater than the collision broadened 
width, on the other hand, we have b << 1, in which case the function 

e"'erfc(b) ~ 1 (b « 1) 

Then from (3.12.9) we have 

1 (41n2)'
1
' S(v0 ) ~- --

Ov0 7r 
(b « 1) 

(3.12.12) 

(3.12.13) 

which is the result (3.11.12) for pure Doppler broadening. The limits ov, >> ovD 
and Ov

0 
<< Ov0 thus reproduce the results for pure co~ision broadening and pure 

Doppler broadening, respectively. In general, for arbitrary values of b, S(vo), 
given by (3.12.9), must be evaluated by using tables of erfc (b). . 

For the general case of arbitrary values of both the parameter b and the detumng 
parameter x, the lineshape function S(v) given by Eq. (3.12.3) must be evaluated 
from tabulated values of the more complicated function 

roo _ _:d:,cy..::eo-l"--:- .": Re (j_ roo dy e-i' ) 
Loo (y + x) 2 + b' - b " Loo X + y + ib 

=iRe w(x + ib) (3.12.14) 

where w is the "error function of complex argument." Numerical values are tab­
ulated in various mathematical handbooks.3 

In Table 3.3 we summarize our results for collision broadening and Doppler 
broadening, as well as the more general case of the Voigt profile. Tables 3.2 and 
3.3 together summarize the results of our classical theory of absorption. With slight 

3. See, for example, M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 
New York, 1971), pp. 325-328. 
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cotnsion Doppler far~ wing 

~ . ~ [\G _f'0:_ 

(a l (b) (C I 

Figure 3.13 Sketch of factors in the integrand of (3.12.3) in three limiting cases: (a) col­
lision~broadened limit, (b) Doppler~broadened limit, (c) far~wing limit. 

these formulas are basically the same as those given by the quantum 
theory of absorption. The case of gain, or ••negative absorption, •• is also described 
by very similar formulas. Thus the results of our classical theory will prove to be 
f:ir more relevant to the operation of lasers than one might at first suspect. Indeed, 
we will refer back to Tables 3.2 and 3.3 in our s~dy of lasers. 

,, • Without going to numerical tables, and even without a study of the asymptotic properties 
of w(x + ib ), it is possible to evaluate the Voigt integral (3.12.3) in several limits because 

factors in the integrand are normalized lineshapes themselves. There are three limits 
interest, as shown in Figure 3. 13. 

. (;ollisi<mal Limit (0v0 >> Ovv): In this case S(11, v) is very broad and slowly varying 
'compared to the narrow Gaussian velocity distribution (Fig. 3.13a). Since the Gaussian is 
normalized to unity it acts like the delta function O(v), and the Voigt integral reduces to the 

S( 11) = S( 11, v = 0 ), which is just the original collisional Lorentzian lineshape given 
(3.6.18). 

, Doppler Limit (Ovv >> Ov0 ): In this case the reverse is true (Fig. 3.13b), and the colli~ 
'sional function S(11, v) acts like the delta function O(v0 - 11 + VII/c). Thus the Voigt 

. , ..... , .... gives back the Gaussian function (3.11.10). Except at high pressures or in cases 
where the Doppler distribution is altered by beam collimation it is usually valid to assume 
that the inequality Ov0 >> Ov0 is accurate and the Doppler limit applies. 

Wing Limit (I v - v0 I >> 011v, 0110 ): This case refers to the spectral region far from 
center, far outside the halfwidths of either the collisional or Doppler factors in the 

integrand. Thus the integrand is the product of two peaked functions. Each peak falls 
the remote wing of the other function (see Fig. 3.13c). Here the qualitative difference 

Gaussian and Lorentzian functions is significant. The Gaussian is much more com­
. It falls to zero much more rapidly than the Lorentzian. Because the Lorentzian's wings 
falling relatively slowly, a~ l/112 for large 11, it still has nonzero value at the position 

the Gaussian peale. However, the value of the Gaussian function is effectively zero by 

<~~mi:~~·~:~i;n:ear the Lorentzian's peak. Thus the contribution of the Gaussian function in 
---' wing is much greater than that of the Lorentzian function in the Gaussian 

and the Voigt integral can be replaced by (3.6.18) in its far wing: 

S(ll)-+ Ovo/1r 2 
(v - vo) 

(3.12.15) 

resUlt is anomalous in the sense that the lineshape behaves like a Lorentzian in the far 
even if the broadening is principally Doppler, not collisional ( 011v >> Ov0 ). • 
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TABLE 3.3 Collision, Doppler, and Voigt 
Linesbapes 

Collision-Broadening Lineshape 

collision rate 
Svo"" 

Doppler-Broadening Lineshape 

[I (T)'/'] Ov0 = 2.15 X 106 ~ M MHz 

T == gas temperature ( K) 

M = molecular weight of absorber (g) 

Ao = wavelength (A.) of absorption line 

Voigt Lineshape 

S(,) ~ 0·
939 

Re w(x + ih) 

"'" 
' -' X= 1.67-7--

"'D 

b = 1.67 °"0 

"'" 
w = error function of complex argument 

3.13 EXAMPLE: ABSORPTION BY SODIUM VAPOR 

Let us consider an example of the use of Tables 3.2 and 3.3. Consider the 5890· 
A. absorption line of sodium vapor at 300 K. The Doppler width is 

o'D ~ 2.15 X 10
02 [sS~O (32~f'] Hz 

~ 1300 MHz 

since the atomic weight of sodium is MN .. = 23 g. From tabulated data we can 
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estimate the collision broadening linewidth of the 5890-A line in pure sodium 
vapor at 300 K to be 

o'o ~ 1700P(Torr) MHz (3.13.2) 

The ratio b of Table 3.3 is therefore 

b = 2.2P(Torr) (3.13.3) 

If P(Torr) is less than, say, about 0.1 Torr, we are in the "Doppler regime.,. In 
this case the absorption coefficient for narrowband light exactly resonant with the 
5890-A absorption line is found from Table 3.2 at the end of Section 3.8 to be 

(3.13.4) 

the sodium D lines the oscillator strength-the factor f-is of order unity. In 
the 5890- and 5896-A lines have oscillator strengths of 0.355 and 0.627, 

From (3.13.4), (3.13.1), and (3.10.8), therefore, we obtain 

a(,0 ) ~ 2.2 X 105P(Torr) em-• (3.13.5) 

which is valid provided the pressure is small enough that Doppler broadening pre­
. For narrowband light of frequency " not necessarily equal to "o we have 

a(P) <'::! 2.2 X 105P(Torr) e-4(P-vo)Z ln 2/5<i, cm-1 

In Figure 3.14 we have plotted the transmission coefficient 

(3.13.6) 

e-D(v)Z VS. Z 

Ip(z) - -a(~)z 
/,(0) - e 

(3.13.7) 

Figure 3.14 Transmission coefficient for 
5890-A radiation in sodium vapor at T = 
300 K, P = 5 X 10-5 Torr. In this case the 
absorption line is Doppler-broadened, with 
Ov0 "" 1300 MHz. The four curves illustrate 
the high selectivity of the absorption pro­
cess. 

~-~-~~----· ~---------~ 
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for nearly monochromatic light of slightly different frequencies. It is evident t?at 
the transmission coefficient has an extremely strong dependence on the ~etunmg 
v - 110 • The detuning of the field frequency v by just_ a very ~mall fractlo~ o_f v 
from the resonance frequency v0 results in a very sharp mcrease m_ ~e transm1ss~on 
coefficient. Similar results apply at higher pressures, where colhs10n broademng 
becomes important. 

PROBLEMS 

3.1 

3.2 

3.3 

3.4* 

Assume the "spring constants" k for the binding of electr~ns in atoms are 
approximately the same as those for the bindin~ of atoms m mol~cules. If 
v ::::::: 5 x 1014 Hz is a typical electronic oscillation frequency, ~stlmate .the 
range of frequencies typical of atomic vibratio~s in n:ole_cules, g1ven typical 
electron-atom mass differences. Does your estunate md1cate that molecular 
vibrations lie in the infrared region of the spectrum? 

The atomic weight oflithium is 6.939 g, and the density oflithium is 0.534 
gj cm3

• Assuming each lithium atom contributes one electron to the ""free­
electron gas," calculate the plasma frequency Pp· For what wavelengths 
would you expect lithium to be transparent? (Note: The transpru:ency of the 
alkali metals in the ultraviolet was discovered by R. W. Wood m 1933.) 

The addition of an ohmic current density to Maxwell's equations leads to 
the wave equation (3.5.6). Show this by adding J = aE to _the right side of 
(2. 1.4) and then retracing the derivation of the wave equanon (2. 1.13). 

Derive the equation for classical ""laser amplification•· by substituti~g 
(3.5.2) into (3.5.6), allowing E" to be time-dependent: E" = E"(t). It lS 

sufficient to assume that En ( t) is slowly varying so that terms proport10nal 
to d2E.j dt2 can be discarded. 

(a) Obtain the equation for dE"/ dt. 
(b) Use the approximations and abbreviations given in Eqs. (3.5. 7)-(3.5.10) 

to show that d!E"I 2/dt = 0 if g = afeoc. 
(c) Sketch on one graph the behavior of E"(t) vs. t obtained from the :o­

lution of the equation ford IE" 12/ dt under the (unreal!Suc) assumption 
thatg = 2a /•0c, and the (more realistic) assumption that g = -Za /•oc· 

3.5 Show that the number of atoms (or molecules) per cm3 of an ideal gas at 
pressure P and temperature Tis given by (3.10.8). 

3.6 a. Verify Eq. (3.12.3). 

b. Using Eqs. (3.4.9) and (3.4.11). show that in the absence of back· 
ground atoms 

3.7* 

Ao Po - v 
nR(v) -1 =---a(v). 

47r 5v0 

PROBLEMS 

c 
\,=-

Po 
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This equation relates the refractive index near a collision-broadened ab­
sorption line to the absorption coefficient. 

Although the relation derived in Problem 3.6 applies to the case of collision 
broadening, a similar relation holds more generally. Show in the case of a 
Voigt profile that 

nR(v) _ 1 = \, lm w(x + ib) a(v) 
4-rr Re w(x + ib) 

where w, x, and bare defined in Section 3.12. 
[Note: The relation between the refractive index and the absorption 

coefficient (or, equivalently, between the real and imaginary parts of 
the complex refractive index) is a special case of the so-called Kramers­
Kronig relations. Such relations may be derived on very general grounds 
based on causality.] 

Estimate the absorption coefficient for 5890-.A radiation in sodium vapor 
containing 2. 7 X 10

12 
atoms/ cm3 at 200°C. [See J. E. Bjorkholm and A. 

Ashkin. Phys. Rev. Lett. 32, 129 (1974)]. 

The C02 molecule has strong absorption lines in the neighborhood of A. = 
10 p.m. Assuming that the cross sections of C02 molecules with N

2 
and. 0

2 
molecules are a(COz. N2 ) = 120 A2 and a( C02 , 0 2 ) = 95 A2 • estimate 
the collision-broadened linewidth for COt in the earth's atmosphere. (Note: 
since the concentration of C02 is very small compared with N

2 
and 0

2 
in 

air, you may assume that only N2-C02 and 0 2-C02 collisions contribute to 
the linewidth.) Compare this with the Doppler width. 

Consider the absorption coefficient a(v0 ) of a pure gas precisely at reso­
nance. Show that a (v0 ) is proportional to the number density of atoms when 
the absorption line is Doppler-broadened, but is independent of the number 
density when the pressure is sufficiently large that collision broadening is 
dominant. 




